欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  225904  225912  225918  225922  225928  225930  225934  225940  225942  225948  225954  225958  225960  225964  225970  225972  225978  225982  225984  225988  225990  225994  225996  225998  225999  226000  226002  226003  226004  226006  226008  226012  226014  226018  226020  226024  226030  226032  226038  226042  226044  226048  226054  226060  226062  226068  226072  226074  226080  226084  226090  226098  266669 

科目: 來源: 題型:解答題

10.如圖所示,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A1、A2、B1、B2、F1、F2分別是其左右頂點(diǎn),上下頂點(diǎn)和左右焦點(diǎn),四邊形A1B1A2B2的面積是四邊形B1F2B2F1面積的2倍.
(1)求橢圓C的離心率;
(2)三角形B1B2A2的外接圓記為⊙M,若直線B1F2被⊙M截得的弦長為$\frac{13}{4}$,求⊙M的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=alnx-2x2,a為正常數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意x1,x2∈(1,+∞),x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓x2+4y2=16,點(diǎn)M(2,1).
(1)求橢圓的焦距和離心率;
(2)若直線l過點(diǎn)M與橢圓交于A,B兩點(diǎn),且點(diǎn)M是線段AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PD=2PA.
(1)證明:CD⊥平面PAC;
(2)若E為AD的中點(diǎn),求證:CE∥平面PAB.
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥DC,DB平分∠ADC,E為PC的中點(diǎn),AD=CD=1,DB=2$\sqrt{2}$,PD=2.
(1)證明:平面PAC⊥平面PBD;
(2)求三棱錐B-ACE的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.表面積為40π的球面上有四點(diǎn)S、A、B、C且△SAB是等邊三角形,球心O到平面SAB的距離為$\sqrt{2}$,若平面SAB⊥平面ABC,則三棱錐S-ABC體積的最大值為(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.6$\sqrt{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1,試討論f(x)的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax,a∈R
(1)討論函數(shù)f(x)在(0,+∞)上的單凋性;
(2)設(shè)函數(shù)g(x)=$\frac{1}{3}$x3+(a-1)x-alnx,問:在定義域內(nèi)是否存在三個(gè)不同的自變量xi(i=1,2,3),使得f(xi)-g(xi)的值相等?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).
(1)求證:DE⊥BC;
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥側(cè)面ABB1A1,AC=AA1=$\sqrt{2}$AB,∠AA1C1=60°.AB⊥AA1,H為棱CC1的中點(diǎn),D為BB1的中點(diǎn).
(Ⅰ)求證:A1D⊥平面AB1H;
(Ⅱ)AB=$\sqrt{2}$,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

同步練習(xí)冊答案