科目: 來源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在
上單調(diào)遞增,求實數(shù)
的取值范圍.
(2)記函數(shù)
,若
的最小值是
,求函數(shù)
的解析式.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當a>ln2-1且x>0時,ex>x2-2ax+1.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)f(x)的導(dǎo)函數(shù)為f ′(x),且對任意x>0,都有f ′(x)>
.
(Ⅰ)判斷函數(shù)F(x)=
在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請將(Ⅱ)中的結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)![]()
(1)求函數(shù)
單調(diào)遞增區(qū)間;
(2)若存在
,使得
是自然對數(shù)的底數(shù)),求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)f(x)=
+3
-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥
+ax+1在x≥
時恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)函數(shù)f(x)=
+
,g(x)=
ln(2ex)(其中e為自然對數(shù)的底數(shù))
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對一切x>0恒成立;若存在,求出一次函數(shù)的表達式,若不存在,說明理由:
3)數(shù)列{
}中,a1=1,
=g(
)(n≥2),求證:
<
<
<1且
<
.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)f(x)=
-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f (1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com