分析 (1)由方程$\frac{x^2}{t+1}+\frac{y^2}{3-t}=1$所表示的曲線為焦點在y軸上的橢圓,可得3-t>t+1>0,解出即可得出.
(2)由于命題P是命題q的充分不必要條件,可得-1<t<1是不等式t2-(a-1)t-a<0解集的真子集,解出即可得出.
解答 解:(1)∵方程$\frac{x^2}{t+1}+\frac{y^2}{3-t}=1$所表示的曲線為焦點在y軸上的橢圓,∴3-t>t+1>0,
解得:-1<t<1.
(2)∵命題P是命題q的充分不必要條件,
∴-1<t<1是不等式t2-(a-1)t-a<0解集的真子集,
因方程t2-(a-1)t-a=0的兩根為-1,-a.
故只需a>1.
點評 本題考查了簡易邏輯的判定方法、一元二次不等式的解法、橢圓的標準方程,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ?x∈R,x02-x0+1<0 | B. | ?x∈R,x02-x0+1<0 | C. | ?x∈R,x02-x0+1≥0 | D. | ?x∈R,x02-x0+1>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,2) | B. | (-∞,2] | C. | (-∞,-3)∪(-3,2] | D. | [2,3)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定 | B. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定 | ||
| C. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定 | D. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2或5 | B. | -4或2 | C. | 2 | D. | 5 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com