分析 (1)使用正弦定理將邊化角整理?xiàng)l件式子,即可得出tanA;
(2)由$\overrightarrow{BA}$$•\overrightarrow{AC}$=-2得bc=4,代入余弦定理得出b,c的關(guān)系式,聯(lián)立方程組解出.
解答 解:(1)∵acosC+$\sqrt{3}$asinC-b-c=0,∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC.
又∵sinB=sin(A+C)=sinAcosC+cosAsinC,∴$\sqrt{3}$sinAsinC=cosAsinC+sinC,
∵sinC≠0,∴$\sqrt{3}$sinA-cosA=1.兩邊平方得:2sin2A-2$\sqrt{3}$sinAcosA+1=1,
∴sinA=$\sqrt{3}$cosA,即tanA=$\sqrt{3}$,∴A=$\frac{π}{3}$.
(2)∵$\overrightarrow{BA}$$•\overrightarrow{AC}$=-2,∴bccosA=2,即bc=4.
∵cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+{c}^{2}-4}{8}$=$\frac{1}{2}$,∴b2+c2=8,
聯(lián)立方程組$\left\{\begin{array}{l}{bc=4}\\{^{2}+{c}^{2}=8}\end{array}\right.$,解得b=c=2.
點(diǎn)評 本題考查了正余弦定理在解三角形中的應(yīng)用,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 橢圓的一部分 | B. | 雙曲線的一部分 | C. | 拋物線的一部分 | D. | 圓的一部分 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:選擇題
在
中,角
的對邊分別是
,已知
,則
,則
的面積為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com