分析 (1)利用賦值法進行求f(1)的值;
(2)根據(jù)函數(shù)的單調(diào)性的定義判斷f(x)在(0,+∞)上的單調(diào)性,并證明.
(3)根據(jù)函數(shù)單調(diào)性的性質(zhì)解不等式即可.
解答 解:(3)令x=y=1,則f(1)=f(1)+f(1),解得f(1)=0.
(2)f(x)在(0,+∞)上的是增函數(shù),
設(shè)x1,x2∈(0,+∞),且x1>x2,則$\frac{{x}_{1}}{{x}_{2}}>1$,
∴f($\frac{{x}_{1}}{{x}_{2}}$)>0,
∴$f({x}_{1})-f({x}_{2})=f({x}_{2}?\frac{{x}_{1}}{{x}_{2}})-f({x}_{2})$=$f({x}_{2})+f(\frac{{x}_{1}}{{x}_{2}})-f({x}_{2})=f(\frac{{x}_{1}}{{x}_{2}})>0$,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上的是增函數(shù).
(3)若f(2)=1,則f(2)+f(2)=f(2×2)=2,
即f(4)=2,
則解關(guān)于x的不等式f(x)+f(x-3)>2.
等價為f(x)+f(x-3)>f(4),
即f[x(x-3)]>f(4),
∵f(x)在(0,+∞)上的是增函數(shù).
∴$\left\{\begin{array}{l}{x>0}\\{x-3>0}\\{x(x-3)>4}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>0}\\{x>3}\\{{x}^{2}-3x-4>0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x>3}\\{x>4或x<-1}\end{array}\right.$,
即x>4,
即不等式的解集為(4,+∞)
點評 本題主要考查函數(shù)單調(diào)性的定義和性質(zhì),以及抽象函數(shù)的求值,利用賦值法是解決抽象函數(shù)的基本方法,利用函數(shù)的單調(diào)性的定義和單調(diào)性的應(yīng)用是解決本題的關(guān)鍵,考查學(xué)生的運算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(2)>e2f(0),f(2015)>e2015f(0) | B. | f(2)>e2f(0),f(2015)<e2015f(0) | ||
| C. | f(2)<e2f(0),f(2015)<e2015f(0) | D. | f(2)<e2f(0),g(2015)>e2015f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{21}$=1 | C. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com