欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知O為坐標原點,點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點.
(1)求線段AB的最短長度;
(2)若線段AB的中點為M,求M的軌跡方程.

分析 (1)當弦AB長度最短時,AB⊥MC,即可求弦AB的長度;
(2)由題設知$\overrightarrow{CM}$•$\overrightarrow{MP}$=0,即可求M的軌跡方程.

解答 解:(1)圓C的方程可化為x2+(y-4)2=16,所以圓心為C(0,4),半徑為4.
當AB⊥MC時弦AB最短,此時AB=4$\sqrt{2}$;
(2)設M(x,y),則$\overrightarrow{CM}$=(x-4,y),$\overrightarrow{MP}$=(2-x,2-y),
由題設知$\overrightarrow{CM}$•$\overrightarrow{MP}$=0,
故(x-4)(2-x)+y(2-y)=0,
即(x-3)2+(y-1)2=2.
由于點P在圓C的內部,
所以M的軌跡方程是(x-3)2+(y-1)2=2.

點評 本題考查直線和圓的方程的應用,考查軌跡方程,考查學生分析解決問題的能力,難度中等.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a,b∈R,且a>b,則下列不等式正確的是( 。
A.2a>2bB.${(\frac{1}{3})^a}>{(\frac{1}{3})^b}$C.a2>b2D.lg(a-b)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某校學生參加了“鉛球”和“立定跳遠”兩個科目的體能測試,每個科目的成績分為A,B,C,D,E五個等級,分別對應5分,4分,3分,2分,1分,該校某班學生兩科目測試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“鉛球”科目的成績?yōu)镋的學生有10人.

(Ⅰ)求該班學生中“立定跳遠”科目中成績?yōu)锳的人數(shù);
(Ⅱ)若該班共有10人的兩科成績得分之和大于7分,其中有2人10分,3人9分,5人8分.從這10人中隨機抽取兩人,求兩人成績之和X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若A(-2,3),B(1,0),C(-1,m)三點在同一直線上,則m=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=-1,則它的漸近線方程為y=±$\frac{3}{2}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a,b,c分別為△ABC三個內角A,B,C所對的邊長,且acosB-bcosA=$\frac{3}{5}$c.
(Ⅰ)求$\frac{tanA}{tanB}$的值;
(Ⅱ)若A=60°,求$\frac{absinC}{{a}^{2}+^{2}-{c}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函效f(x)=log${\;}_{\frac{1}{2}}$(1-x)+log${\;}_{\frac{1}{2}}$(x+a).若函數(shù)g(x)=2x+a的圖象所過定點的縱坐標為4.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)的定義域;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知A,B是雙曲線C的兩個頂點,直線l與雙曲線C交于不同的兩點P,Q,且與實軸所在直線垂直,若$\overrightarrow{PB}$•$\overrightarrow{AQ}$=0,則雙曲線C的離心率e=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知α為△ABC的內角,且sinα+cosα=$\frac{1}{5}$,則$\frac{3sinα+2cosα}{sinα-cosα}$的值為(  )
A.$\frac{6}{7}$B.-$\frac{6}{7}$C.$\frac{7}{5}$D.-$\frac{4}{3}$

查看答案和解析>>

同步練習冊答案