| A. | $\frac{9}{4}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 1 |
分析 根據(jù)題意,畫出圖形,結(jié)合圖形,利用$\overrightarrow{MH}$與$\overrightarrow{NH}$共線,求出x與y的表達(dá)式,
再利用基本不等式求出x+4y的最小值即可.
解答
解:如圖所示,;
△ABC中,D為BC邊的中點(diǎn),H為AD的中點(diǎn),
且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,
∴$\overrightarrow{AH}$=$\overrightarrow{AM}$+$\overrightarrow{MH}$=x$\overrightarrow{AB}$+$\overrightarrow{MH}$=$\frac{1}{2}$$\overrightarrow{AD}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴$\overrightarrow{MH}$=($\frac{1}{4}$-x)$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,
同理,$\overrightarrow{NH}$=$\frac{1}{4}$$\overrightarrow{AB}$+($\frac{1}{4}$-y)$\overrightarrow{AC}$;
又$\overrightarrow{MH}$與$\overrightarrow{NH}$共線,
∴存在實(shí)數(shù)λ,使$\overrightarrow{MH}$=λ$\overrightarrow{NH}$(λ<0),
即($\frac{1}{4}$-x)$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$=λ[$\frac{1}{4}$$\overrightarrow{AB}$+($\frac{1}{4}$-y)$\overrightarrow{AC}$];
∴$\left\{\begin{array}{l}{\frac{1}{4}-x=\frac{1}{4}λ}\\{\frac{1}{4}=(\frac{1}{4}-y)λ}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{1}{4}(1-λ)}\\{y=\frac{1}{4}(1-\frac{1}{λ})}\end{array}\right.$;
∴x+4y=$\frac{1}{4}$(1-λ)+(1-$\frac{1}{λ}$)
=-$\frac{1}{4}$λ+$\frac{1}{-λ}$+$\frac{5}{4}$≥2$\sqrt{(-\frac{1}{4}λ)•\frac{1}{-λ}}$+$\frac{5}{4}$=$\frac{9}{4}$,
當(dāng)且僅當(dāng)λ=-2時(shí),“=”成立;
∴x+4y的最小值是$\frac{9}{4}$.
故選:A.
點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用問題,也考查了平面向量的加法與減法運(yùn)算問題,是中檔題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com