【題目】EC垂直Rt△ABC的兩條直角邊,D是斜邊AB的中點,AC=6,BC=8,EC=12,則DE的長為 .
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)+2=
,當x∈(0,1]時,f(x)=x2 , 若在區(qū)間(﹣1,1]內,g(x)=f(x)﹣t(x+2)有兩個不同的零點,則實數(shù)t的取值范圍是( )
A.(0,
]
B.(0,
]
C.[﹣
,
]
D.[﹣
,
]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證: ![]()
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,
在直角坐標系
中,曲線
的參數(shù)方程為
(
是參數(shù),
),以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標方程;
(2)當
時,曲線
和
相交于
、
兩點,求以線段
為直徑的圓的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AP=1,AD=2,E為線段PD上一點,記
=λ. 當λ=
時,二面角D﹣AE﹣C的平面角的余弦值為
. ![]()
(1)求AB的長;
(2)當
時,求異面直線BP與直線CE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=
π,在△ABC中,角A、B、C所對的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c=
,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準
(噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求直方圖中
的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使
的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由;
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com