【題目】已知:三棱錐
中,側(cè)面
垂直底面,
是底面最長的邊;圖1是三棱錐
的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐
的直觀圖的一部分,其中點
在
平面內(nèi).
(Ⅰ)請在圖2中將三棱錐
的直觀圖補充完整,并指出三棱錐
的哪些面是直角三角形;![]()
![]()
(Ⅱ)設(shè)二面角
的大小為
,求
的值;
(Ⅲ)求點
到面
的距離.
![]()
【答案】(1)見解析(2)
(3)![]()
【解析】試題分析:(1)由三視圖還原(如下圖)可知,
H為BC中點,
,
,所以
和
是直角三角形,
(2)由等體積法由
可求得點
到面
的距離。
![]()
試題解析:(Ⅰ)補充完整的三棱錐
的直觀圖如圖所示;
由三視圖知
和
是直角三角形.
![]()
(Ⅱ)如圖,過
作
交
于點
.
由三視圖知
,
,
,
∴在圖中所示的坐標(biāo)系下,相關(guān)點的坐標(biāo)為:
,
,
,
,
則
,
,
,
.
設(shè)平面
、平面
的法向量分別為
,
.
由
,
,得![]()
令
, 得
,
,即
.
由
,
,得
,
令
, 得
,
,即
.
,
,則
.
∵二面角
的大小為銳角,∴
的值為
.
(Ⅲ)記
到面
的距離為
,
由
,
,
,
,
得
,
,
,
.
又三棱錐
的體積
,
由
,可得:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯誤的是( )
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)=
(x>0)不存在“和諧區(qū)間”
D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格
和房屋的面積
的數(shù)據(jù):
房屋面積( | 115 | 110 | 80 | 135 | 105 |
銷售價格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數(shù)據(jù)對應(yīng)的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計當(dāng)房屋面積為150
時的銷售價格.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點
的光線,經(jīng)
軸上一點
反射后的射線
過點
. ![]()
(1)求點
的坐標(biāo);
(2)若圓
過點
且與
軸相切于點
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為ρ2=
,F(xiàn)1是圓錐曲線C的左焦點.直線l:
(t為參數(shù)).
(1)求圓錐曲線C的直角坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)若直線l與圓錐曲線C交于M,N兩點,求|F1M|+|F1N|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標(biāo)準(zhǔn)方程是( )
A.(x-2)2+(y-1)2=1
B.(x-2)2+(y-3)2=1
C.(x-3)2+(y-2)2=1
D.(x-3)2+(y-1)2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣lnx.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x﹣t,若函數(shù)h(x)=g(x)﹣f(x)在[
,e]上(這里e≈2.718)恰有兩個不同的零點,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求滿足
的
的取值;
(2)若函數(shù)
是定義在
上的奇函數(shù)
①存在
,不等式
有解,求
的取值范圍;
②若函數(shù)
滿足
,若對任意
,不等式
恒成立,求實數(shù)
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com