分析 (1)先證出BB1⊥AC,AC⊥B1D,即可證明AC⊥平面BB1D,從而證出AC⊥BD;
(2)先證明CC1∥平面BB1D,得出CC1∥FG,從而得出FG∥BB1,再證出FG∥平面AA1B1B.
解答 解:(1)證明:四棱柱ABCD-A1B1C1D1中,
∵BB1⊥底面ABCD,AC?平面ABCD,
∴BB1⊥AC;
又AC⊥B1D,
BB1∩B1D=B1,
∴BB1?平面BB1D,B1D?平面BB1D,
∴AC⊥平面BB1D;
又BD?平面BB1D,
∴AC⊥BD;
(2)四棱柱ABCD-A1B1C1D1中,CC1∥BB1,
CC1?平面BB1D,BB1?平面BB1D,
∴CC1∥平面BB1D;
又平面CEC1∩平面BB1D=FG,
∴CC1∥FG,
∴FG∥BB1;
又FG?平面ABB1A1,BB1?平面ABB1A1,
∴FG∥平面AA1B1B.
點評 本題主要考查了空間中的直線與平面垂直、直線與平面平行的判定和性質的應用問題,也考查了空間想象能力和推理論證能力,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a30,a1 | B. | a1,a30 | C. | a8,a30 | D. | a8,a7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| 公務員 | 教師 | 合計 | |
| 同意延遲退休 | 40 | n | 70 |
| 不同意延遲退休 | m | 20 | p |
| 合計 | 50 | 50 | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com