分析 當(dāng)x=-2或 x=3時(shí),不等式仍然成立,即|(-2)2+a(-2)+b|≤0,|32+3a+b|≤0,即(-2)2+a(-2)+b=0,32+3a+b=0,求得a和b的值.
解答 解:∵不等式|x2+ax+b|≤|2x2-4x-6|=|2(x-3)(x+2)|對(duì)所有實(shí)數(shù)x都成立,
∴當(dāng)x=-2或 x=3時(shí),不等式仍然成立,即|(-2)2+a(-2)+b|≤0,|32+3a+b|≤0,
即 (-2)2+a(-2)+b=0,32+3a+b=0,求得 a=-1,b=-2.
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,函數(shù)的恒成立問題,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{a}$>$\frac{1}$ | B. | $\frac{a}$>1 | C. | a2<b2 | D. | ab<a+b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,-$\frac{2}{3}$] | B. | (-∞,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,+∞) | D. | [-$\frac{1}{3}$,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | |λ$\overrightarrow{a}$|=|λ|$\overrightarrow{a}$ | B. | |λ$\overrightarrow{a}$|=λ|$\overrightarrow{a}$| | C. | 若$\overrightarrow{a}$=$\overrightarrow{0}$,則λ$\overrightarrow{a}$=$\overrightarrow{0}$ | D. | (λ-2)$\overrightarrow{a}$=$λ\overrightarrow{a}$+2$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com