分析 設D(x,y).由|CD|=1,可得$\sqrt{(x-3)^{2}+{y}^{2}}$=1,化為(x-3)2+y2=1.令$\left\{\begin{array}{l}{x=3+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π)).$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$=(1+x,3+y).利用模的計算公式可得|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|,再利用三角函數(shù)的單調(diào)性即可得出.
解答 解:設D(x,y).
∵|CD|=1,∴$\sqrt{(x-3)^{2}+{y}^{2}}$=1,化為(x-3)2+y2=1.
令$\left\{\begin{array}{l}{x=3+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π)).
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$=(1+x,3+y).
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|=$\sqrt{(1+x)^{2}+(3+y)^{2}}$=$\sqrt{(4+cosθ)^{2}+(3+sinθ)^{2}}$=$\sqrt{6sinθ+8cosθ+26}$=$\sqrt{10sin(θ+β)+26}$$≥\sqrt{26-10}$=4,當sin(θ+β)=-1時取等號.
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|的最小值是4.
故答案為:4.
點評 本題考查了數(shù)量積的坐標運算性質(zhì)、向量的坐標運算、圓的參數(shù)方程、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)=-2sinx | B. | f(x)=2sinx | ||
| C. | f(x)=$\frac{\sqrt{2}}{2}$sin2x | D. | f(x)=$\frac{\sqrt{2}}{2}$(sin2x+cos2x) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{5}$ | B. | $\sqrt{29}$ | C. | $3\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | B. | p是假命題,¬p:?x0∈(0,$\frac{π}{2}$),f(x)≥0 | ||
| C. | p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | D. | p是真命題,¬p:?x0∈(0,$\frac{π}{2}$),f(x)≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com