分析 (1)運(yùn)用離心率公式和a,b,c的關(guān)系,解得b,進(jìn)而得到橢圓方程;
(2)聯(lián)立直線方程和橢圓方程,消去y,運(yùn)用韋達(dá)定理和配方,化簡(jiǎn)整理,解方程即可得到k.
解答 解:(1)由題意可得,a=2,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,b2=a2-c2,
解得b=$\sqrt{2}$,
則橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1;
(2)由$\left\{\begin{array}{l}{y=k(x-1)}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$得(1+2k2)x2-4k2x+2k2-4=0,
設(shè)M(x1,y1),N(x2,y2),
則y1=k(x1-1),y2=k(x2-1),
x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-4}{1+2{k}^{2}}$,
即有|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(\frac{4{k}^{2}}{1+2{k}^{2}})^{2}-\frac{4(2{k}^{2}-4)}{1+2{k}^{2}}}$
=$\frac{2\sqrt{4+6{k}^{2}}}{1+2{k}^{2}}$=$\frac{2\sqrt{10}}{3}$,
解得k=±1.
點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),主要考查橢圓的離心率和方程的運(yùn)用,聯(lián)立直線方程,運(yùn)用韋達(dá)定理,考查運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 8 | B. | -8 | C. | 8或-8 | D. | 都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{5\sqrt{3}}{2}$ | B. | $\frac{\sqrt{37}}{2}$ | C. | $\frac{\sqrt{29}}{2}$ | D. | $\frac{3\sqrt{53}}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com