(12分)已知函數(shù)![]()
,在同一周期內(nèi),
當(dāng)
時(shí),
取得最大值
;當(dāng)
時(shí),
取得最小值
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅲ)若
時(shí),函數(shù)
有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
滿足:對任意的實(shí)數(shù)
有![]()
(Ⅰ)求
的解析式;
(Ⅱ)若方程
有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
已知函數(shù)
成等差數(shù)列,點(diǎn)
是函數(shù)
圖像上任意一點(diǎn),點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn)
的軌跡是函數(shù)
的圖像。
(1)解關(guān)于
的不等式
;
(2)當(dāng)
時(shí),總有
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
=
(ex-1)。
(1)求
的定義域;
(2)判斷函數(shù)
的增減性,并用定義法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
定義在
上的函數(shù)
滿足
,且當(dāng)
時(shí),
,
(1)求
在
上的表達(dá)式;
(2)若
,且
,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)某市“環(huán)保提案”對某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為
.現(xiàn)已知相距
的
,
兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù)
,
,它們連線上任意一點(diǎn)C處的污染指數(shù)
等于兩化工廠對該處的污染指數(shù)之和.設(shè)
.
(1) 試將
表示為
的函數(shù);
(2) 若
時(shí),
在
處取得最小值,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)售出時(shí),能賣出400個(gè),已知這種商品每個(gè)漲價(jià)1元,其銷售量就減少10個(gè),為了取得最大利潤,每個(gè)售價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12)
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域
內(nèi)修建一個(gè)矩形
的草坪,并建立如圖平面直角坐標(biāo)系,且
,
,另外
的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測量
,
,
,
.
(1)求直線
的方程;
(2)應(yīng)如何設(shè)計(jì)才能使草坪的占地面積最大?并求最大面積。![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com