欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.過拋物線C:y2=2px(p>0)的焦點F的直線l交C于A、B兩點,P為C的準線上的動點,且A、B、P三點不共線,∠APB=θ,則$cos\frac{θ}{2}$的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

分析 證明以AB為直徑作圓則此圓與準線l相切,可得0°<θ≤90°,即可求出$cos\frac{θ}{2}$的取值范圍.

解答 解:設(shè)AB為過拋物線焦點F的弦,C為AB中點,A、B、P在準線l上射影分別為M、N、Q,
∵AC+BC=AM+BN
∴CQ=$\frac{1}{2}$AB,
∴以AB為直徑作圓則此圓與準線l相切,
∵P為C的準線上的動點,且A、B、P三點不共線,∠APB=θ,
∴0°<θ≤90°,
∴$\frac{\sqrt{2}}{2}$≤$cos\frac{θ}{2}$<1.
故答案為:[$\frac{\sqrt{2}}{2}$,1).

點評 本題以拋物線為載體,考查拋物線過焦點弦的性質(zhì),關(guān)鍵是正確運用拋物線的定義,合理轉(zhuǎn)化,綜合性強.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)F1、F2是橢圓$\frac{{x}^{2}}{4}$+y2=1的左右焦點,動點P在橢圓上,則$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$的取值范圍為(0,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.拋物線x2=4y的弦AB過焦點F,且AB的長為6,則AB的中點M的縱坐標為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=x3-6x2+9x-10的零點個數(shù)為1 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列各式的值為$\frac{1}{4}$的是(  )
A.$2{cos^2}\frac{π}{12}-1$B.$\frac{{2tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$
C.1-2sin275°D.sin15°cos15°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知y=f′(x)是函數(shù)$f(x)=\frac{1}{3}{x^3}+2{x^2}+5$的導數(shù),則f′(1)=( 。
A.$\frac{22}{3}$B.10C.5D.$\frac{10}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知a=log23,b=log25,c=-1,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知$z=-\frac{1}{2}+\frac{{\sqrt{3}i}}{2}$.
(1)$\bar z$是z的共軛復數(shù),求${\bar z^2}+\bar z+1$的值;
(2)類比數(shù)列的有關(guān)知識,求${S_{2016}}=1+z+{z^2}+…+{z^{2015}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=ex,g(x)=x+1.
(1)證明:f(x)≥g(x);
(2)求y=f(x),y=g(x)與x=-1所圍成的封閉圖形的面積.

查看答案和解析>>

同步練習冊答案