分析 根據(jù)題意可設(shè)D(0,0),A(2,0),B(-1,$\sqrt{3}$),C(-1,-$\sqrt{3}$),P(2+cosθ,sinθ),M($\frac{1+cosθ}{2}$,$\frac{sinθ-\sqrt{3}}{2}$),利用坐標運算求出$\overrightarrow{BM}$以及${\overrightarrow{BM}}^{2}$的最大值即可.
解答 解:平面內(nèi),|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|=2,$\overrightarrow{DA}$•$\overrightarrow{BC}$=$\overrightarrow{DB}$•$\overrightarrow{AC}$=$\overrightarrow{DC}$•$\overrightarrow{AB}$=0,
∴$\overrightarrow{DA}$⊥$\overrightarrow{BC}$,$\overrightarrow{DB}$⊥$\overrightarrow{AC}$,$\overrightarrow{DC}$⊥$\overrightarrow{AB}$,
可設(shè)D(0,0),A(2,0),B(-1,$\sqrt{3}$),C(-1,-$\sqrt{3}$),
∵動點P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,
可設(shè)P(2+cosθ,sinθ),M($\frac{1+cosθ}{2}$,$\frac{sinθ-\sqrt{3}}{2}$),
∴$\overrightarrow{BM}$=($\frac{3+cosθ}{2}$,$\frac{sinθ-3\sqrt{3}}{2}$),
∴${\overrightarrow{BM}}^{2}$=${(\frac{3+cosθ}{2})}^{2}$+${(\frac{sinθ-3\sqrt{3}}{2})}^{2}$=$\frac{37+12sin(\frac{π}{6}-θ)}{4}$≤$\frac{49}{4}$,
當且僅當sin($\frac{π}{6}$-θ)=1時取等號,
∴|$\overrightarrow{BM}$|2的最大值為$\frac{49}{4}$.
故答案為:$\frac{49}{4}$.
點評 本題考查了平面向量坐標運算性質(zhì)、模的計算公式、數(shù)量積運算性質(zhì)以及三角函數(shù)求值問題,是綜合題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-3,1) | B. | (0,2) | C. | [0,1] | D. | [-2,1] |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com