欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點(diǎn)個(gè)數(shù)有2個(gè).

分析 直線與橢圓聯(lián)立,得(2k2+1)x2+(4k-4k2)x+2k2-4k-2=0,利用根的判別式能求出直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點(diǎn)個(gè)數(shù).

解答 解:聯(lián)立$\left\{\begin{array}{l}{y=kx-k+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2k2+1)x2+(4k-4k2)x+2k2-4k-2=0,
△=(4k-4k22-4(2k2+1)(2k2-4k-2)
=24k2-16k+8
=24(k-$\frac{1}{3}$)2+$\frac{16}{3}$>0,
∴直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點(diǎn)個(gè)數(shù)有2個(gè).
故答案為:2.

點(diǎn)評(píng) 本題考查直線與橢圓的交點(diǎn)個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意根的判別式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若$\underset{lim}{t→0}$$\frac{f({x}_{0}-3t)-f({x}_{0})}{t}$=3,則f′(x0)=( 。
A.-1B.1C.-9D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面上有A、B、C三點(diǎn),滿足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值為(  )
A.4B.-4C.-$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓的中心為坐標(biāo)原點(diǎn)O,它的短軸長(zhǎng)為$2\sqrt{2}$,一個(gè)焦點(diǎn)F的坐標(biāo)為(c,0)(c>0),一個(gè)定點(diǎn)A的坐標(biāo)為$({\frac{10}{c}-c,0})$且$\overrightarrow{OF}=2\overrightarrow{FA}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過(guò)焦點(diǎn)F的直線交橢圓于P,Q兩點(diǎn).
①若OP⊥OQ,求直線PQ的斜率;
②若直線PQ的斜率為1,在線段OF之間是否存在一個(gè)點(diǎn)M(x0,0),使得以MP,MQ為鄰邊構(gòu)成的平行四邊形為菱形,若存在,求出M點(diǎn)的坐標(biāo);不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)F1、F2分別是橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|+|PF1|的最大值為( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過(guò)橢圓C的左焦點(diǎn)F且不與x軸重合的直線m,與橢圓C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)P,與橢圓C交于點(diǎn)Q,使得四邊形MPNQ為菱形?若存在,請(qǐng)求出直線m的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=6,直線y=kx與橢圓交于A,B兩點(diǎn).
(Ⅰ)若△AF1F2的周長(zhǎng)為16,求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若$k=\frac{{\sqrt{2}}}{4}$,且A,B,F(xiàn)1,F(xiàn)2四點(diǎn)共圓,求橢圓離心率e的值;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)P(x0,y0)為橢圓上一點(diǎn),且直線PA的斜率k1∈(-2,-1),試求直線PB的斜率k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知對(duì)稱中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)與圓x2+y2-2$\sqrt{2}$x=0的圓心重合,且橢圓過(guò)點(diǎn)($\sqrt{2}$,1).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,1)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知z=$\frac{2+i}{1-2i}$(i為虛數(shù)單位),則復(fù)數(shù)z=(  )
A.-1B.lC.iD.-i

查看答案和解析>>

同步練習(xí)冊(cè)答案