【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(萬元)有以下統(tǒng)計資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y | 2 | 4 | 5 | 6 | 7 |
若由資料知y對x呈線性相關(guān)關(guān)系。試求:
(1)求
; (2)線性回歸方程
;
(3)估計使用10年時,維修費(fèi)用是多少?
附:利用“最小二乘法”計算a,b的值時,可根據(jù)以下公式:
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是圓
外一點,過點
作圓
的切線,切點為
,記四邊形
的面積為
,當(dāng)
在圓
上運(yùn)動時,
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使得Sn達(dá)到最大值的n是( )
A.21
B.20
C.19
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示,
是梯形
的高,
,
,
,現(xiàn)將梯形
沿
折起如圖乙所示的四棱錐
,使得
,點
是線段
上一動點.
![]()
![]()
(1)證明:
和
不可能垂直;
(2)當(dāng)
時,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線
與圓
交于M、N兩點,且M、N關(guān)于直線
對稱.
(1)求m,k的值;
(2)若直線
與圓C交P,Q兩點,是否存在實數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有
個紅球和
個黑球的口袋內(nèi)任取
個球,那么互斥而不對立的兩個事件是( )
A. 至少有一個黑球與都是黑球 B. 至少有一個黑球與都是紅球
C. 至少有一個黑球與至少有
個紅球 D. 恰有
個黑球與恰有
個黑球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐
中,底面為矩形,
底面
,
,
為
中點.
![]()
(Ⅰ)在圖中作出平面
與
的交點
,并指出點
所在位置(不要求給出理由);
(Ⅱ)在線段
上是否存在一點
,使得直線
與平面
所成角的正弦值為
,若存在,請說明點
的位置;若不存在,請說明理由;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1,l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結(jié)M、N兩地之間的鐵路線是圓心在l2上的一段圓弧.若點M在點O正北方向,且|MO|=3 km,點N到l1,l2的距離分別為4 km和5 km.
![]()
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點O正東方向選址建分校,考慮環(huán)境問題,要求校址到點O的距離大于4 km,并且鐵路線上任意一點到校址的距離不能少于
km,求該校址距點O的最近距離.(注:校址視為一個點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,a2=6,a2+a3=24,在等差數(shù)列{bn}中,b1=a1 , b3=﹣10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com