分析 先求出函數(shù)的導數(shù),得到f(x)的單調(diào)性,從而求出函數(shù)的值域.
解答 解:f′(x)=$\frac{{6x}^{2}-12x-90}{{({3x}^{2}+x+44)}^{2}}$,
令g(x)=6x2-12x-90=6(x2-2x-15)=6[(x-1)2-16],
∴g(x)在x∈(3,7))遞增,
令g(x)=0,得x=5,
故g(x)在(3,5)為負數(shù),在(5,7)為正數(shù),
即函數(shù)f(x)在(3,5)遞減,在(5,7)遞增,
∴f(x)min=f(5)=$\frac{91}{32}$,
而f(3)=$\frac{109}{37}$≈2.95,f(7)=$\frac{291}{99}$≈2.94,
故答案為:[$\frac{91}{32}$,$\frac{109}{37}$).
點評 本題考察了求函數(shù)的值域問題,考察函數(shù)的單調(diào)性問題,是一道基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 288 | B. | 144 | C. | 216 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com