【題目】已知直線
與橢圓
切于點
,與圓
交于點
,圓
在點
處的切線交于點
,
為坐標(biāo)原點,則
的面積的最大值為( )
A.
B.2C.
D.1
【答案】A
【解析】
設(shè)點
,
,利用四點
,
,
,
共圓,求得以
為直徑的圓,與已知圓的方程相減得出直線
的方程,直線與過點
的橢圓的切線重合,兩個方程相等,可得
,
,再由橢圓的參數(shù)方程和向量數(shù)量積的坐標(biāo)表示和向量的模,結(jié)合三角形的面積公式和三角恒等變換以及三角函數(shù)的基本性質(zhì)求出所求的最大值。
設(shè)
,
,
,由
,
,可得四點
,
,
,
共圓,
可得以
為直徑的圓,方程為
,
聯(lián)立圓
,相減可得
的方程為
,
又
與橢圓相切,可得過
的切線方程為
,即為
,
由兩直線重合的條件可得
,
,
由于
在橢圓上,可設(shè)
,
,
,
即有
,
,
可得
,
且
,
,
即有
,![]()
![]()
,當(dāng)
即
或
或
或
時,
的面積取得最大值
.
故選:
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)黨中央“扶貧攻堅”的號召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):
![]()
經(jīng)計算:
,
,
,
,
,
,
,其中
分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù),
.
(1)若用線性回歸模型,求
關(guān)于
的回歸方程
(結(jié)果精確到
);
(2)若用非線性回歸模型求得
關(guān)于
的回歸方程為
,且相關(guān)指數(shù)為
.
(i)試與(1)中的回歸模型相比,用
說明哪種模型的擬合效果更好;
(ii)用擬合效果好的模型預(yù)測溫度為
時該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).
附:對于一組數(shù)據(jù)
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
;相關(guān)指數(shù)為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5: 不等式選講
已知函數(shù)f(x)=
的定義域為R.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足
=n時,求7a+4b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓
:
,稱圓心在原點
,半徑為
的圓是橢圓
的“伴橢圓”,若橢圓
的一個焦點為
,其短軸上一個端點到
的距離為
.
(1)求橢圓
的方程;
(2)過點
作橢圓
的“伴隨圓”
的動弦
,過點
、
分別作“伴隨圓”
的切線,設(shè)兩切線交于點
,證明:點
的軌跡是直線,并寫出該直線的方程;
(3)設(shè)點
是橢圓
的“伴隨圓”
上的一個動點,過點
作橢圓
的切線
、
,試判斷直線
、
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
為參數(shù)且
,
,
,曲線
的參數(shù)方程為
為參數(shù)),以
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的普通方程及
的直角坐標(biāo)方程;
(2)若曲線
與曲線
分別交于點
,
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為
.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.
![]()
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:![]()
| 0.100 | 0.050 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
且
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時,若函數(shù)
的兩個極值點分別為
、
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,
,
,點
是邊
上一點,且
,點
是
的中點,將
沿著
折起,使點
運動到點
處,且滿足
.
![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com