分析 (1)由題意知$|\begin{array}{l}{\overrightarrow{OF}}\end{array}||\begin{array}{l}{\overrightarrow{FQ}}\end{array}|=\frac{1}{cosθ}$,$S=\frac{1}{2}tanθ$,從而1<tanθ<4;
(2)以O(shè)為原點(diǎn),OF所在直線(xiàn)為x軸建立直角坐標(biāo)系,并設(shè)Q(m,n),則F(c,0),由題意知$\overrightarrow{OF}•\overrightarrow{FQ}=c(m-c)=1$,則$m=c+\frac{1}{c}$.由此知${|\begin{array}{l}{\overrightarrow{OQ}}\end{array}|}^{2}=(c+\frac{1}{c})^{2}+\frac{9}{4}$,由此入手,當(dāng)$|\begin{array}{l}{\overrightarrow{OQ}}\end{array}|$取最小值時(shí),能夠求出橢圓的方程.
解答 解:(1)由題意知,$\overrightarrow{OF}•\overrightarrow{FQ}=|\begin{array}{l}{\overrightarrow{OF}}\end{array}||\begin{array}{l}{\overrightarrow{FQ}}\end{array}|cosθ=1$
所以$|\begin{array}{l}{\overrightarrow{OF}}\end{array}||\begin{array}{l}{\overrightarrow{FQ}}\end{array}|=\frac{1}{cosθ}$,
因?yàn)?S=\frac{1}{2}|\begin{array}{l}{\overrightarrow{OF}}\end{array}||\begin{array}{l}{\overrightarrow{FQ}}\end{array}|sin(π-θ)$=$\frac{1}{2}|\begin{array}{l}{\overrightarrow{OF}}\end{array}||\begin{array}{l}{\overrightarrow{FQ}}\end{array}|sinθ$,
所以$S=\frac{1}{2}tanθ$,
又$\frac{1}{2}$<S<2,
所以1<tanθ<4;
(2)以O(shè)為原點(diǎn),OF所在直線(xiàn)為x軸建立直角坐標(biāo)系,
并設(shè)Q(m,n),則F(c,0),
且$\left\{\begin{array}{l}{S=\frac{1}{2}cn}\\{S=\frac{3}{4}c}\end{array}\right.$,故$n=\frac{3}{2}$.
因?yàn)?\overrightarrow{OF}=(c,0)$,$\overrightarrow{FQ}=(m-c,n)$,
所以$\overrightarrow{OF}•\overrightarrow{FQ}=c(m-c)=1$,
則$m=c+\frac{1}{c}$,故$Q(c+\frac{1}{c},\frac{3}{2})$.
從而${|\begin{array}{l}{\overrightarrow{OQ}}\end{array}|}^{2}=(c+\frac{1}{c})^{2}+\frac{9}{4}$.
又c≥2,
故當(dāng)c=2時(shí),$|\begin{array}{l}{\overrightarrow{OQ}}\end{array}|$最小,此時(shí)$Q(\frac{5}{2},\frac{3}{2})$.
設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1\\;\\;(a>b>0)$,
則有$\left\{\begin{array}{l}{{c}^{2}=4={a}^{2}-^{2}}\\{\frac{(\frac{5}{2})^{2}}{{a}^{2}}+\frac{(\frac{3}{2})^{2}}{^{2}}=1}\end{array}\right.$
解得a2=10,b2=6,
故橢圓的方程為:$\frac{{x}^{2}}{10}+\frac{{y}^{2}}{6}=1$.
點(diǎn)評(píng) 本題考查圓錐曲線(xiàn)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意積累解題方法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com