欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.設圓x2+y2+2$\sqrt{3}$x-13=0的圓心為A,直線l過點B($\sqrt{3}$,0)且與x軸不重合,l交圓A于C,D兩點過B作AC的平行線交AD于點E
(Ⅰ)證明:|EA|+|EB|為定值,并寫出點E的軌跡方程
(Ⅱ)設過點M(0,2)的直線t與點E的軌跡交于y軸右側不同的兩點P,Q,若O在以PQ為直徑的圓上,求直線t的斜率k的值.

分析 (Ⅰ)可得得到|EB|=|ED|,于是|EA|+|EB|=|EA|+|ED|=|AD|=4,故EA+EB=4是定值,
(II)顯然直線x=0不滿足題設條件,可設直線l:y=kx+2.P(x1,y1),Q(x2,y2),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+2}\end{array}\right.$,消去y得:(1+4k2)x2+16kx+12=0.
 ${x}_{1}+{x}_{2}=\frac{-16k}{1+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{12}{1+4{k}^{2}}$,
根據(jù)題意,得∠POQ=90°?$\overrightarrow{OP}•\overrightarrow{OQ}=0$
$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4=$\frac{12(1+{k}^{2})}{1+4{k}^{2}}+2k×\frac{-16k}{1+4{k}^{2}}+4$=$\frac{16-4{k}^{2}}{1+4{k}^{2}}=0$,即可求得k即可.

解答 解:(I)證明:因為|AD|=|AC|,EB∥AC,所以∠EBD=∠ACD=∠ADC,
所以|EB|=|ED|,于是|EA|+|EB|=|EA|+|ED|=|AD|.
又圓A的標準方程為${(x+\sqrt{3})^2}+{y^2}=16$,從而|AD|=4,所以|EA|+|EB|=4.
由題設得$A(-\sqrt{3},0),B(\sqrt{3},0),|AB|=2\sqrt{3}$,
由橢圓定義可得點E的軌跡方程為$\frac{x^2}{4}+{y^2}=1(y≠0)$.…(5分)
(II)顯然直線x=0不滿足題設條件,可設直線l:y=kx+2.P(x1,y1),Q(x2,y2),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+2}\end{array}\right.$,消去y得:(1+4k2)x2+16kx+12=0.
∵與y軸右側相交為P,Q兩點∴$\left\{\begin{array}{l}△={({16k})^2}-4×12({1+4{k^2}})>0\\ k<0\end{array}\right.$,$k∈(-∞,-\frac{{\sqrt{3}}}{2})$,
${x}_{1}+{x}_{2}=\frac{-16k}{1+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{12}{1+4{k}^{2}}$,…(8分)
根據(jù)題意,得∠POQ=90°?$\overrightarrow{OP}•\overrightarrow{OQ}=0$
$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4=$\frac{12(1+{k}^{2})}{1+4{k}^{2}}+2k×\frac{-16k}{1+4{k}^{2}}+4$=$\frac{16-4{k}^{2}}{1+4{k}^{2}}=0$,
∴k=-2,符合$k∈(-∞,-\frac{{\sqrt{3}}}{2})$,故k=-2.…(12分)

點評 本題考查了橢圓的方程,直線與橢圓的位置關系,靈活運用韋達定理化簡求值、平面向量的數(shù)量積運算是解題關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,則sin(2α-$\frac{π}{6}$)的值為( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.±$\frac{2\sqrt{2}}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若△ABC的面積為$\sqrt{3}$,BC=2,則$\frac{AB}{AC}$的取值范圍是[$\frac{\sqrt{21}}{7}$,$\frac{\sqrt{21}}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某公司獎勵甲,乙,丙三個團隊去A,B,C三個景點游玩,三個團隊各去一個不同景點,征求三個團隊意見得到:甲團隊不去A;乙團隊不去B;丙團隊只去A或C.公司按征求意見安排,則下列說法一定正確的是( 。
A.丙團隊一定去A景點B.乙團隊一定去C景點
C.甲團隊一定去B景點D.乙團隊一定去A景點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在實數(shù)R中定義一種新運算:@,對實數(shù)a,b經(jīng)過運算a@b后是一個確定的唯一的實數(shù).@運算有如下性質:(1)對任意實數(shù)a,a@0=a;(2)對任意實數(shù)a,b,a@b=ab+(a@0)+(b@0)那么:關于函數(shù)f(x)=ex@$\frac{1}{{e}^{x}}$的性質下列說法正確的是:①函數(shù)f(x)的最小值為3;②函數(shù)f(x)是偶函數(shù);③函數(shù)f(x)在(-∞,0)上為減函數(shù),這三種說法正確的有①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學、外語3門統(tǒng)一高考成績和學生自主選擇的學業(yè)水平等級性考試科目共同構成.該省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調查,調查結果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調查結果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關”?
贊成不贊成合計
城鎮(zhèn)居民
農村居民
合計
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$
P(K2≥k00.100.050.005
k02.7063.8417.879
(2)用樣本的頻率估計概率,若隨機在全省不贊成高考改革的家長中抽取3個,記這3個家長中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學期望E(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.△ABC中,已知cosA=$\frac{5}{13}$,sinB=$\frac{3}{5}$,則cosC的值為( 。
A.-$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$或$\frac{56}{65}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.將半徑為R的半圓卷成一個圓錐,圓錐的體積為( 。
A.$\frac{\sqrt{3}}{3}$πR3B.$\frac{\sqrt{3}}{6}$πR3C.$\frac{1}{6}$πR3D.$\frac{\sqrt{3}}{24}$πR3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列命題:
①若直線l⊥平面α,直線m⊥平面α,則l⊥m;
②若a,b都是正實數(shù),則a+b≥2$\sqrt{ab}$;
③若x2>x,則x>1;
④函數(shù)y=x3是指數(shù)函數(shù).
其中假命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案