分析 由a,b,c成等比數(shù)列,可得b2=ac,由sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,可解得ac=13,再由余弦定理求得a2+c2=37,從而求得(a+c)2的值,即可得解.
解答 解:∵a,b,c成等比數(shù)列,
∴b2=ac,
∵sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,
∴可得$\frac{25}{169}$=1-$\frac{144}{{a}^{2}{c}^{2}}$,解得:ac=13,
∵由余弦定理:b2=a2+c2-2accosB=ac=a2+c2-ac×$\frac{24}{13}$,解得:a2+c2=37.
∴(a+c)2=a2+c2+2ac=37+2×13=63,故解得a+c=3$\sqrt{7}$.
故答案為:3$\sqrt{7}$.
點評 本題主要考查正弦定理和余弦定理的應(yīng)用,以及同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 88 | B. | 89 | C. | 90 | D. | 91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{4\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{6}$ | B. | $\frac{{8\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}+\frac{{4\sqrt{3}π}}{3}$ | D. | $4\sqrt{3}+\sqrt{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com