數(shù)列{ bn }中, b1=a, b2=a2, 其中a>0, 對(duì)于函數(shù)
f(x)=
(bn+1-bn)x3-(bn-bn-1)x (n≥2) 有
.
(1)求數(shù)列{ bn }的通項(xiàng)公式bn;
(2)若
Sn=c1+c2+…+cn,
①求證:
; ②求證: Sn<
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:013
已知{an}為等比數(shù)列, 由下列各式確定的數(shù)列{bn}中, 不是等比數(shù)列的一個(gè)是
[ ]
A.bn=an+an+1 B.bn=an2
C.bn=
D.bn=nan
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若d∈{a1,a2,a3,…,an,…}∩{b1,b2,b3,…,bn,…},則稱d為數(shù)列{an}與{bn}的公共項(xiàng),將數(shù)列{an}{bn}的公共項(xiàng),按它們?cè)谠瓟?shù)列中的先后順序排成一個(gè)新的數(shù)列{dn},證明數(shù)列{dn}的通項(xiàng)公式為dn=32n+1(n∈N*);
(Ⅲ)設(shè)數(shù)列{dn}中第n項(xiàng)是數(shù)列{bn}中的第r項(xiàng),Br為數(shù)列{bn}的前r項(xiàng)的和,Dn為數(shù)列{dn}的前n項(xiàng)和,Tn=Br+Dn,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:038
| |||||||||||
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com