【題目】設(shè)橢圓
的左焦點(diǎn)為
,上頂點(diǎn)為
.已知橢圓的短軸長為4,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)
在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)
為直線
與
軸的交點(diǎn),點(diǎn)
在
軸的負(fù)半軸上.若
(
為原點(diǎn)),且
,求直線
的斜率.
【答案】(Ⅰ)
(Ⅱ)
或
.
【解析】
(Ⅰ)由題意得到關(guān)于a,b,c的方程,解方程可得橢圓方程;
(Ⅱ)聯(lián)立直線方程與橢圓方程確定點(diǎn)P的坐標(biāo),從而可得OP的斜率,然后利用斜率公式可得MN的斜率表達(dá)式,最后利用直線垂直的充分必要條件得到關(guān)于斜率的方程,解方程可得直線的斜率.
(Ⅰ) 設(shè)橢圓的半焦距為
,依題意,
,又
,可得
,b=2,c=1.
所以,橢圓方程為
.
(Ⅱ)由題意,設(shè)
.設(shè)直線
的斜率為
,
又
,則直線
的方程為
,與橢圓方程聯(lián)立
,
整理得
,可得
,
代入
得
,
進(jìn)而直線
的斜率
,
在
中,令
,得
.
由題意得
,所以直線
的斜率為
.
由
,得
,
化簡得
,從而
.
所以,直線
的斜率為
或
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
.
(1)討論
的單調(diào)性;
(2)若不等式
恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:對于任意
,存在實(shí)數(shù)
,當(dāng)
時(shí),
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某個(gè)機(jī)械零件是由兩個(gè)有公共底面的圓錐組成的,且這兩個(gè)圓錐有公共點(diǎn)的母線互相垂直,把這個(gè)機(jī)械零件打磨成球形,該球的半徑最大為1,設(shè)這兩個(gè)圓錐的高分別為
,則
的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是橢圓
與拋物線
的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn)
.
(1)求橢圓
及拋物線
的方程;
(2)設(shè)過
且互相垂直的兩動(dòng)直線
,
與橢圓
交于
兩點(diǎn),
與拋物線
交于
兩點(diǎn),求四邊形
面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)(x∈R)滿足f(1+x)=f(1-x)且x∈[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=
則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
為兩條不同的直線,
,
為兩個(gè)不同的平面,對于下列四個(gè)命題:
①
,
,
,
②
, ![]()
③
,
,
④
, ![]()
其中正確命題的個(gè)數(shù)有( )
A.
個(gè) B.
個(gè) C.
個(gè) D.
個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知S2=4,an+1=2Sn+1,n∈N*.
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an-n-2|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個(gè)數(shù)是( )
①直線上有兩個(gè)點(diǎn)到平面的距離相等,則這條直線和這個(gè)平面平行;
②
為異面直線,則過
且與
平行的平面有且僅有一個(gè);
③直四棱柱是直平行六面體;
④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)為
、
,
,若圓Q方程
,且圓心Q在橢圓上.
![]()
(1)求橢圓
的方程;
(2)已知直線
交橢圓
于A、B兩點(diǎn),過直線
上一動(dòng)點(diǎn)P作與
垂直的直線
交圓Q于C、D兩點(diǎn),M為弦CD中點(diǎn),
的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com