欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知tanα=2,求$\frac{2sinα-2cosα}{4sinα-9cosα}$的值為-2.

分析 根據(jù)同角三角函數(shù)求得sinα=2cosα,代入求值即可.

解答 解:∵tanα=2,
∴$\frac{sinα}{cosα}$=2,則sinα=2cosα,
∴$\frac{2sinα-2cosα}{4sinα-9cosα}$=$\frac{4cosα-2cosα}{8cosα-9cosα}$=-2,
故答案是:-2.

點評 本題主要考察了同角三角函數(shù)關系式的應用,屬于基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.若集合A={-2,0,2,3},B={-1,0,1,2},則A∩B=(  )
A.{0,1}B.{0,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若$α∈({0,\frac{π}{3}})$,則${3^{|{lo{g_3}({sinα})}|}}$=$\frac{1}{sinα}$(寫出化簡的最后結果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點.
(1)求證:BE∥平面ACF
(2)求異面直線AD與CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)y=2$\sqrt{3}sinxcosx+8si{n}^{2}x+2co{s}^{2}$x,
(1)求函數(shù)y的最小值及取得最小值時x的集合;
(2)求函數(shù)y的對稱軸.對稱中心;
(3)求函數(shù)y的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-2ax-alnx$對區(qū)間(1,2)上任意x1,x2(x1≠x2),都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,則a的取值范圍為( 。
A.$({\frac{4}{5},+∞})$B.$[{\frac{4}{5},+∞})$C.$[{\frac{1}{3},+∞})$D.(-∞,1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設甲、乙、丙三個乒乓球協(xié)會的運動員人數(shù)分別為27,9,18,現(xiàn)采用分層抽樣的方法從這三個協(xié)會中抽取6名運動員組隊參加比賽
(1)求應從這三個協(xié)會中分別抽取的運動員的人數(shù);
(2)將抽取的6名運動員進行編號,編號分別為A1,A2,A3,A4,A5,A6.現(xiàn)從這6名運動員中隨機抽取2人參加雙打比賽,設A為事件“編號為A5和A6的兩名運動員中至少有1人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
(1)求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)
回歸直線的斜率和截距的最小二乘估計公式分別為$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax2+bx+5,曲線y=f(x)在點P(1,f(1))處的切線方程為y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的單調區(qū)間
(3)求y=f(x)在[-3,1]上的最大值.

查看答案和解析>>

同步練習冊答案