分析 由題意可得a≤$\frac{{x}^{2}-2xy}{xy+{y}^{2}}$,分子分母同除以y2,再令t=$\frac{x}{y}$+1,可得a≤t+$\frac{3}{t}$-4,運用基本不等式可得右邊的最小值,進而得到a的范圍,即有a的最大值.
解答 解:不等式x2-ay2≥(2+a)xy(x>0,y>0)恒成立,
即為a≤$\frac{{x}^{2}-2xy}{xy+{y}^{2}}$,即為a≤$\frac{(\frac{x}{y})^{2}-\frac{2x}{y}}{\frac{x}{y}+1}$,
令t=$\frac{x}{y}$+1,(t>1),則$\frac{(\frac{x}{y})^{2}-\frac{2x}{y}}{\frac{x}{y}+1}$=$\frac{(t-1)^{2}-2(t-1)}{t}$
=t+$\frac{3}{t}$-4≥2$\sqrt{t•\frac{3}{t}}$-4=2$\sqrt{3}$-4,
當且僅當t=$\sqrt{3}$>1取得最小值2$\sqrt{3}$-4,
即有a≤2$\sqrt{3}$-4.
故答案為:2$\sqrt{3}$-4.
點評 本題考查不等式恒成立問題的解法,注意運用參數分離和基本不等式,考查運算求解能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 2.5 | B. | 4$\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 5 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com