分析 (1)設(shè)x<0,則-x>0,將-x代入函數(shù)的解析式即可;(2)通過求導(dǎo)判斷函數(shù)的單調(diào)性即可.
解答 解:(1)∵f(x)是R上的偶函數(shù),∴f(-x)=f(x)
當(dāng)x≥0時(shí),f(x)=$\sqrt{x}$,
設(shè)x<0,則-x>0,
∴f(-x)=$\sqrt{-x}$=f(x),
∴f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$;
(2)函數(shù)f(x)在(0,+∞)遞增,
證明如下:
由f′(x)=$\frac{1}{2\sqrt{x}}$>0,
得f(x)在(0,+∞)遞增.
點(diǎn)評 本題考查了函數(shù)的奇偶性和單調(diào)性問題,是一道基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{3}$ | B. | -$\frac{1}{2}$ | C. | -1 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4<a<5 | B. | a>4 | C. | a<5 | D. | 以上均不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com