分析 利用余弦定理求出BC的值,根據平面向量數(shù)量積的定義求出$\overrightarrow{BC}•\overrightarrow{CA}$的值.
解答 解:△ABC中,∠A=120°,且AB=AC=2,
由余弦定理得
BC2=AB2+AC2-2AB•AC•cos∠A
=22+22-2×2×2×cos120°
=12,
∴BC=2$\sqrt{3}$,
∴$\overrightarrow{BC}•\overrightarrow{CA}$=($\overrightarrow{AC}$-$\overrightarrow{AB}$)•(-$\overrightarrow{AC}$)
=-${\overrightarrow{AC}}^{2}$+$\overrightarrow{AB}$•$\overrightarrow{AC}$
=-22+2×2×cos120°
=-6.
故答案為:2$\sqrt{3}$,-6.
點評 本題考查了余弦定理和平面向量數(shù)量積的運算問題,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | c>b>a | B. | a>c>b | C. | a>b>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {-2,-1,0,1} | B. | {-1,0,1} | C. | {0,1} | D. | {-1,0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{5}$-1 | B. | $\frac{3+\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com