| A. | [-1,0] | B. | [-1,+∞) | C. | [0,3] | D. | [3,+∞) |
分析 求出函數(shù)f(x)的導(dǎo)函數(shù),由導(dǎo)函數(shù)在($\frac{1}{2}$,+∞)大于等于0恒成立解答案
解答 解:由f(x)=x2+ax+$\frac{1}{x}$,得f′(x)=2x+a-$\frac{1}{{x}^{2}}$=$\frac{{2x}^{3}+{ax}^{2}-1}{{x}^{2}}$,
令g(x)=2x3+ax2-1,
要使函數(shù)f(x)=x2+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函數(shù),
則g(x)=2x3+ax2-1在x∈($\frac{1}{2}$,+∞)大于等于0恒成立,
g′(x)=6x2+2ax=2x(3x+a),
當(dāng)a=0時,g′(x)≥0,g(x)在R上為增函數(shù),則有g(shù)($\frac{1}{2}$)≥0,解得$\frac{1}{4}$+$\frac{a}{4}$-1≥0,a≥3(舍);
當(dāng)a>0時,g(x)在(0,+∞)上為增函數(shù),則g($\frac{1}{2}$)≥0,解得$\frac{1}{4}$+$\frac{a}{4}$-1≥0,a≥3;
當(dāng)a<0時,同理分析可知,滿足函數(shù)f(x)=x2+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函數(shù)的a的取值范圍是a≥3(舍).
故選:D.
點評 本題考查了二次函數(shù)的圖象和性質(zhì),考查了導(dǎo)函數(shù)在求解含有參數(shù)問題中的應(yīng)用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com