| A. | 21 | B. | 19 | C. | 9 | D. | -11 |
分析 根據(jù)圓C1與圓C2外切,|C1C2|=r1+r2,列出方程求出m的值即可.
解答 解:圓${C_1}:{x^2}+{y^2}=1$與圓${C_2}:(x-3{)^2}+(y-4{)^2}=25-m$(m<25)外切,
則|C1C2|=r1+r2,
即1+$\sqrt{25-m}$=$\sqrt{{3}^{2}{+4}^{2}}$,
化簡(jiǎn)得$\sqrt{25-m}$=4,
解得m=9.
故選:C.
點(diǎn)評(píng) 本題考查了圓的標(biāo)準(zhǔn)方程、兩點(diǎn)間的距離公式和圓與圓的位置關(guān)系的應(yīng)用問題,是基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$ | B. | $(-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞)$ | C. | $[-\sqrt{3},\sqrt{3}]$ | D. | $(-∞,-\sqrt{3}]∪[\sqrt{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com