分析 (1)易知c=1;從而可求得a=$\sqrt{2}$,b=1;從而寫出橢圓C的方程.
(2)不妨設(shè)A(x1,y1),B(x2,y2),從而由題意可得$\left\{\begin{array}{l}{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}=0}\\{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1}\end{array}\right.$,從而化簡(jiǎn)可得2(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)=4-3${{x}_{1}}^{2}{{x}_{2}}^{2}$;再設(shè)點(diǎn)O到直線AB的距離為d,從而化簡(jiǎn)d=$\frac{OA•OB}{AB}$=$\frac{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}{\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}}$=$\frac{\sqrt{6}}{3}$.從而證明.
解答 解:(1)由題意知,2c=2,
故c=1;
又∵a2-b2=c2=1;
∴a-b=$\frac{1}{a+b}$=$\sqrt{2}$-1;
∴a=$\sqrt{2}$,b=1;
∴橢圓C的方程為:$\frac{{x}^{2}}{2}$+y2=1.
(2)證明:不妨設(shè)A(x1,y1),B(x2,y2),
由題意可得,
$\left\{\begin{array}{l}{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}=0}\\{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1}\end{array}\right.$,
則${{x}_{1}}^{2}{{x}_{2}}^{2}$=${{y}_{1}}^{2}$${{y}_{2}}^{2}$=(1-$\frac{{{x}_{1}}^{2}}{2}$)(1-$\frac{{{x}_{2}}^{2}}{2}$);
即2(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)=4-3${{x}_{1}}^{2}{{x}_{2}}^{2}$;
設(shè)點(diǎn)O到直線AB的距離為d,
d=$\frac{OA•OB}{AB}$=$\frac{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}{\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}}$
=$\sqrt{\frac{(1+\frac{{{x}_{1}}^{2}}{2})(1+\frac{{{x}_{2}}^{2}}{2})}{{{x}_{1}}^{2}+{{x}_{2}}^{2}-2{x}_{1}{x}_{2}+{{y}_{1}}^{2}+{{y}_{2}}^{2}-2{y}_{1}{y}_{2}}}$
=$\sqrt{\frac{1+\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{2}+\frac{{{x}_{1}}^{2}{{x}_{2}}^{2}}{4}}{1+\frac{{{x}_{1}}^{2}}{2}+1+\frac{{{x}_{2}}^{2}}{2}}}$
=$\sqrt{\frac{1+(1-\frac{3}{4}{{x}_{1}}^{2}{{x}_{2}}^{2})+\frac{{{x}_{1}}^{2}{{x}_{2}}^{2}}{4}}{2+(1-\frac{3}{4}{{x}_{1}}^{2}{{x}_{2}}^{2})}}$
=$\sqrt{\frac{2}{3}}$=$\frac{\sqrt{6}}{3}$.
故點(diǎn)O到直線AB的距離為定值.
點(diǎn)評(píng) 本題考查了橢圓的方程的求法及橢圓與直線的位置關(guān)系的判斷,屬于難題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com