欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式ax2+ax+1>0對?x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.

分析 先解命題,再研究命題的關(guān)系,函數(shù)y=ax在R上單調(diào)遞增,由指數(shù)函數(shù)的單調(diào)性解決;等式ax2+ax+1>0對?x∈R恒成立,用函數(shù)思想,又因為是對全體實數(shù)成立,可用判斷式法解決,若p且q為假,p或q為真,兩者是一真一假,計算可得答案.

解答 解:∵y=ax在R上單調(diào)遞增,
∴a>1;
又a>0,不等式ax2+ax+1>0對?x∈R恒成立,
∴△<0,即a2-4a<0,∴0<a<4,
∴q:0<a<4.
而命題p且q為假,p或q為真,那么p、q中有且只有一個為真,一個為假.
①若p真,q假,則a≥4;
②若p假,q真,則0<a≤1.
所以a的取值范圍為(0,1]∪[4,+∞).

點評 本題通過邏輯關(guān)系來考查了函數(shù)單調(diào)性和不等式恒成立問題,這樣考查使題目變得豐富多彩,考查面比較廣.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示是2014年某大學(xué)自主招生面試環(huán)節(jié)中,六位評委為某考生打出的面試分?jǐn)?shù)的莖葉統(tǒng)計圖,若該生筆試成績90分,下列關(guān)于該同學(xué)成績的說法正確的是( 。
A.面試成績的中位數(shù)為83
B.面試成績的平均分為84
C.總成績的眾數(shù)為173
D.總成績的方差與面試成績的方差都是19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=ax3-x2+x-5在(-∞,+∞)上既有極大值,也有極小值,則實數(shù)a的取值范圍為( 。
A.a>$\frac{1}{3}$B.a≥$\frac{1}{3}$C.a<$\frac{1}{3}$且a≠0D.a≤$\frac{1}{3}$且a≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow m=(sinx,cosx),\overrightarrow n=(cosx,\sqrt{3}cosx)$,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n-\frac{{\sqrt{3}}}{2}$,x∈R.
(1)若f(x)=$\frac{1}{3}$,求$cos(2x+\frac{5}{6}π)$的值;
(2)△ABC的內(nèi)角A滿足:f(A)=$\frac{1}{2},A∈(0,\frac{π}{2})$,若b=$\sqrt{2}$,c=1,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)點A(1,0),B(-1,0),若直線2x+y-b=0與線段AB相交,則b的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知(1+2$\sqrt{x}$)n的展開式中,某一項的系數(shù)是它前一項系數(shù)的2倍,而又等于它后一項系數(shù)的$\frac{5}{6}$.
(1)求展開后所有項的系數(shù)之和及所有項的二項式系數(shù)之和;
(2)求展開式中的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1、F2是橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1的兩個焦點,P是橢圓上任意一點
(1)∠F1PF2=$\frac{π}{3}$,求△F1PF2的面積
(2)求|PF1||PF2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上單調(diào)遞增,求ω的取值范圍;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有30個零點,在所有滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}的前n項和為Sn,滿足Sn+$\frac{1}{{S}_{n}}$+2=an(n≥2),a1=-$\frac{2}{3}$,Sn-$\frac{n+1}{n+2}$.

查看答案和解析>>

同步練習(xí)冊答案