分析 先求出函數(shù)的導(dǎo)數(shù),通過(guò)討論判別式的符號(hào),結(jié)合函數(shù)的單調(diào)性,從而求出m的范圍.
解答 解:對(duì)函數(shù)f(x)求導(dǎo)得,
f′(x)=3x2+2mx+m+$\frac{4}{3}$,
令f′(x)=0,即3x2+2mx+m+$\frac{4}{3}$=0,
此一元二次不等式的判別式
△=4m2-12(m+$\frac{4}{3}$)=4m2-12m-16,
若△=0,則f′(x)=0有兩個(gè)相等的實(shí)根x0,且f′(x)的符號(hào)如下:
| x | (-∞,x0) | x0 | (x0,+∞) |
| f′(x) | + | 0 | + |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,二次函數(shù)的性質(zhì),是一道中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-3,-1) | B. | (-3,1) | C. | (-1,0) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| x | 1 | 2 | 3 | 4 | 5 |
| f(x) | 4 | 1 | 3 | 5 | 2 |
| A. | 4 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com