| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-2,3) | D. | (-∞,-2) |
分析 求出原函數(shù)的導(dǎo)函數(shù),由圖象得到f′(-2)=f(3)=0,聯(lián)立求得b,c的值,代入g(x)=x2+$\frac{2b}{3}$+$\frac{c}{3}$,由g(x)>0求得x的范圍,再由導(dǎo)數(shù)求出函數(shù)g(x)的減區(qū)間,則函數(shù)g(x)=log2(x2+$\frac{2b}{3}$+$\frac{c}{3}$)的單調(diào)遞減區(qū)間可求.
解答 解:∵f(x)=x3+bx2+cx+d,
∴f′(x)=3x2+2bx+c,
由圖可知f′(-2)=f(3)=0.
∴$\left\{\begin{array}{l}{12-4b+c=0}\\{27+6b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-\frac{3}{2}}\\{c=-18}\end{array}\right.$令g(x)=則g(x)=x2-x-6,g′(x)=2x-1.
由g(x)=x2+$\frac{2b}{3}$+$\frac{c}{3}$=x2-x-6>0,解得x<-2或x>3.
當(dāng)x<$\frac{1}{2}$時(shí),g′(x)<0,
∴g(x)=x2-x-6在(-∞,-2)上為減函數(shù).
∴函數(shù)g(x)=log2(x2+$\frac{2b}{3}$+$\frac{c}{3}$)的單調(diào)遞減區(qū)間為(-∞,-2).
故選:D.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,訓(xùn)練了簡(jiǎn)單的復(fù)合函數(shù)單調(diào)性的求法,關(guān)鍵是注意函數(shù)的定義域,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 60°或120° | C. | 30° | D. | 30°或150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com