【題目】在平面直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為
(θ為參數(shù)),直線(xiàn)l的參數(shù)方程為
(m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.
(1)求曲線(xiàn)C的極坐標(biāo)方程;
(2)直線(xiàn)l與曲線(xiàn)C相交于M,N兩點(diǎn),若
,求
的值.
【答案】(1)
;(2)![]()
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.
解:(1)曲線(xiàn)
的參數(shù)方程為
為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為
,整理得
,
根據(jù)
,轉(zhuǎn)換為極坐標(biāo)方程為
,
即
或
(包含
),
所以曲線(xiàn)C的極坐標(biāo)方程為
.
(2)直線(xiàn)
的參數(shù)方程為
轉(zhuǎn)換為直線(xiàn)的標(biāo)準(zhǔn)參數(shù)式為
為參數(shù))
代入圓的直角坐標(biāo)方程為
,
,設(shè)方程兩根為
,
所以
,
,
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)
在橢圓
上,過(guò)點(diǎn)
作
軸的垂線(xiàn),垂足為
,點(diǎn)
滿(mǎn)足
,已知點(diǎn)
的軌跡是過(guò)點(diǎn)
的圓.
(1)求橢圓
的方程;
(2)設(shè)直線(xiàn)
與橢圓
交于
,
兩點(diǎn)(
,
在
軸的同側(cè)),
,
為橢圓的左、右焦點(diǎn),若
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜率為
的直線(xiàn)交拋物線(xiàn)
于
兩點(diǎn),已知點(diǎn)
的橫坐標(biāo)比點(diǎn)
的橫坐標(biāo)大4,直線(xiàn)
交線(xiàn)段
于點(diǎn)
,交拋物線(xiàn)于點(diǎn)
.
![]()
(1)若點(diǎn)
的橫坐標(biāo)等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,圓
的參數(shù)方程為
(
為參數(shù)),以
為極點(diǎn),
軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線(xiàn)
的極坐標(biāo)方程為![]()
(Ⅰ)求
的極坐標(biāo)方程;
(Ⅱ)射線(xiàn)
與圓C的交點(diǎn)為
與直線(xiàn)
的交點(diǎn)為
,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列兩個(gè)命題,命題甲:平面α與平面β相交;命題乙:相交直線(xiàn)l,m都在平面α內(nèi),并且都不在平面β內(nèi),直線(xiàn)l,m中至少有一條與平面β相交.則甲是乙的( 。
A.充分且必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
的各項(xiàng)均為正數(shù),其前n項(xiàng)的積為
,記
,
.
(1)若數(shù)列
為等比數(shù)列,數(shù)列
為等差數(shù)列,求數(shù)列
的公比.
(2)若
,
,且![]()
①求數(shù)列
的通項(xiàng)公式.
②記
,那么數(shù)列
中是否存在兩項(xiàng)
,(s,t均為正偶數(shù),且
),使得數(shù)列
,
,
,成等差數(shù)列?若存在,求s,t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提升學(xué)生“數(shù)學(xué)建模”的核心素養(yǎng),某校數(shù)學(xué)興趣活動(dòng)小組指導(dǎo)老師給學(xué)生布置了一項(xiàng)探究任務(wù):如圖,有一張邊長(zhǎng)為27cm的等邊三角形紙片ABC,從中裁出等邊三角形紙片
作為底面,從剩余梯形
中裁出三個(gè)全等的矩形作為側(cè)面,圍成一個(gè)無(wú)蓋的三棱柱(不計(jì)損耗).
![]()
(1)若三棱柱的側(cè)面積等于底面積,求此三棱柱的底面邊長(zhǎng);
(2)當(dāng)三棱柱的底面邊長(zhǎng)為何值時(shí),三棱柱的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,手機(jī)計(jì)步軟件迅速流行開(kāi)來(lái),這類(lèi)軟件能自動(dòng)記載每個(gè)人每日健步的步數(shù),從而為科學(xué)健身提供一定的幫助.某市工會(huì)為了解該市市民每日健步走的情況,從本市市民中隨機(jī)抽取了2000名市民(其中不超過(guò)40歲的市民恰好有1000名),利用手機(jī)計(jì)步軟件統(tǒng)計(jì)了他們某天健步的步數(shù),并將樣本數(shù)據(jù)分為
,
,
,
,
,
,
,
,
九組(單位:千步),將抽取的不超過(guò)40歲的市民的樣本數(shù)據(jù)繪制成頻率分布直方圖如右,將40歲以上的市民的樣本數(shù)據(jù)繪制成頻數(shù)分布表如下,并利用該樣本的頻率分布估計(jì)總體的概率分布.
![]()
分組 (單位:千步) |
|
|
|
|
|
|
|
|
|
頻數(shù) | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)現(xiàn)規(guī)定,日健步步數(shù)不低于13000步的為“健步達(dá)人”,填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有
%的把握認(rèn)為是否為“健步達(dá)人”與年齡有關(guān);
健步達(dá)人 | 非健步達(dá)人 | 總計(jì) | |
40歲以上的市民 | |||
不超過(guò)40歲的市民 | |||
總計(jì) |
(2)(ⅰ)利用樣本平均數(shù)和中位數(shù)估計(jì)該市不超過(guò)40歲的市民日健步步數(shù)(單位:千步)的平均數(shù)和中位數(shù);
(ⅱ)由頻率分布直方圖可以認(rèn)為,不超過(guò)40歲的市民日健步步數(shù)
(單位:千步)近似地服從正態(tài)分布
,其中
近似為樣本平均數(shù)
(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值),
的值已求出約為
.現(xiàn)從該市不超過(guò)40歲的市民中隨機(jī)抽取5人,記其中日健步步數(shù)
位于
的人數(shù)為
,求
的數(shù)學(xué)期望.
參考公式:
,其中
.
參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
若
,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,
,
是以
為斜邊的等腰直角三角形,
為
的中點(diǎn),
為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線(xiàn)
與平面
所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com