欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,下列說(shuō)法正確的是(  )
A.$f({{2^{\frac{1}{x}}}})>f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})$B.$f({{{({\frac{1}{8}})}^2}})>f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})$
C.$f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$D.$f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})>f({{2^{\frac{1}{x}}}})$

分析 利用f(x-1)是偶函數(shù),可得f(-x)=f(x-2),f($lo{g}_{2}\frac{1}{8}$)=f(-3)=f(1),根據(jù)x>0,${2}^{\frac{1}{x}}$$>1>\frac{1}{64}$,f(x)在(0,+∞)上單調(diào)遞增,即可得出結(jié)論.

解答 解:∵f(x-1)是偶函數(shù),
∴f(-x-1)=f(x-1),
∴f(-x)=f(x-2),
∴f($lo{g}_{2}\frac{1}{8}$)=f(-3)=f(1),
∵x>0,${2}^{\frac{1}{x}}$$>1>\frac{1}{64}$,f(x)在(0,+∞)上單調(diào)遞增,
∴$f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性與單調(diào)性的綜合,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)$(0.027)^{-\frac{1}{3}}$-$25{6}^{\frac{3}{4}}$+$(2\sqrt{2})^{-\frac{2}{3}}$+π0;
(2)2log32-log332+log38-5log53

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動(dòng)時(shí),使|MF|+|MA|取得最小值的M的坐標(biāo)為( 。
A.(2,2)B.($\frac{1}{2}$,1)C.(1,$\sqrt{2}$)D.(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1上的點(diǎn)P到它的左焦點(diǎn)的距離是8,那么點(diǎn)P到它的右焦點(diǎn)的距離是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合A={1,2,3,5,7},B={x∈N|2<x≤6},全集U=AU B,則A∩(∁uB)=( 。
A.{1,2,7}B.{1,7}C.{2,3,7}D.{2,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=cosx與函數(shù)g(x)=loga($\frac{1}{a}$)x(a>0且a≠1),則函數(shù)F(x)=$\frac{f(x)}{g(x)}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖所示,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點(diǎn).
(Ⅰ)若$\frac{BM}{MA}$=$\frac{BN}{NC}$,求證:無(wú)論點(diǎn)P在DD1上如何移動(dòng),總有BP⊥MN;
(Ⅱ)棱DD1上是否存在這樣的點(diǎn)P,使得平面APC1⊥平面A1ACC1?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系XOY中,點(diǎn)集K={(x,y)|(|x|+2|y|-4)(2|x|+|y|-4)≤0}所對(duì)應(yīng)的平面區(qū)域的面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示在長(zhǎng)方體ABCD-A1B1C1D1中,E,F(xiàn),M,N分別為DC,A1B1,AC,BB1的中點(diǎn)
(1)求證:EF⊥D1B;
(2)求證:MN∥平面AB1C1

查看答案和解析>>

同步練習(xí)冊(cè)答案