欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.在平面直角坐標(biāo)系XOY中,點(diǎn)集K={(x,y)|(|x|+2|y|-4)(2|x|+|y|-4)≤0}所對(duì)應(yīng)的平面區(qū)域的面積為$\frac{32}{3}$.

分析 利用不等式對(duì)應(yīng)區(qū)域的對(duì)稱(chēng)性求出在第一象限的面積,乘以4得答案.

解答 解:∵(|x|+2|y|-4)(2|x|+|y|-4)≤0對(duì)應(yīng)的區(qū)域關(guān)于原點(diǎn)對(duì)稱(chēng),x軸對(duì)稱(chēng),y軸對(duì)稱(chēng),
∴只要作出在第一象限的區(qū)域即可.
當(dāng)x≥0,y≥0時(shí),
不等式等價(jià)為|(x+2y-4)(2x+y-4)≤0,
即$\left\{\begin{array}{l}{x+2y-4≥0}\\{2x+y-4≤0}\end{array}\right.$或$\left\{\begin{array}{l}{x+2y-4≤0}\\{2x+y-4≥0}\end{array}\right.$,
在第一象限內(nèi)對(duì)應(yīng)的圖象為,
則A(2,0),B(4,0),
由$\left\{\begin{array}{l}{x+2y-4=0}\\{2x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{4}{3}}\end{array}\right.$,即C($\frac{4}{3},\frac{4}{3}$),
則三角形ABC的面積S=$\frac{1}{2}$×2×$\frac{4}{3}$=$\frac{4}{3}$,則在第一象限的面積S=2×$\frac{4}{3}$=$\frac{8}{3}$,
則點(diǎn)集K對(duì)應(yīng)的區(qū)域總面積S=4×$\frac{8}{3}$=$\frac{32}{3}$.
故答案為:$\frac{32}{3}$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,主要考查區(qū)域面積的計(jì)算,利用二元一次不等式組表示平面區(qū)域的對(duì)稱(chēng)性是解決本題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=|{\begin{array}{l}{2cos({x+\frac{π}{3}-α})}&{2sinα}\\{sin({x+\frac{π}{3}-α})}&{cosα}\end{array}}|$
(1)求f(x)的單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象F按向量$\overrightarrow{a}$=($\frac{π}{3}$,-1)平移到F′,F(xiàn)′的解析式是y=f′(x).求f′(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,下列說(shuō)法正確的是(  )
A.$f({{2^{\frac{1}{x}}}})>f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})$B.$f({{{({\frac{1}{8}})}^2}})>f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})$
C.$f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$D.$f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})>f({{2^{\frac{1}{x}}}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一條準(zhǔn)線方程為x=$\frac{8}{3}$$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)P(8,0),M,N是橢圓C上關(guān)于x軸對(duì)稱(chēng)的兩個(gè)不同的點(diǎn),連結(jié)PN交橢圓C于另一點(diǎn)E,求證:直線ME與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離與它到直線x+2=0的距離相等,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.把函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到$y=2sin(3x-\frac{π}{4})$的圖象,則函數(shù)y=f(x)的解析式是y=2sin(3x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(ωx+ϕ)(A≠0,ω>0,-π<ϕ<0)在$x=\frac{2π}{3}$時(shí)取得最大值,且它的最小正周期為π,則( 。
A.f(x)的圖象過(guò)點(diǎn)$(0,\frac{1}{2})$B.f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對(duì)稱(chēng)中心是$({\frac{5π}{12},0})$D.f(x)的圖象的一條對(duì)稱(chēng)軸是$x=\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若f(x)=1-2a-2asinx-2cos2x的最小值為g(a).
(1)求g(a)的表達(dá)式
(2)當(dāng)g(a)=$\frac{1}{2}$時(shí),求a的值,并求此時(shí)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算:
(1)$\root{3}{(-2)^{3}}$-($\frac{1}{3}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4;          
(2)lg25+lg50•lg2+(lg2)2

查看答案和解析>>

同步練習(xí)冊(cè)答案