已知直線
經(jīng)過(guò)拋物線
的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).
![]()
(1)若
,求點(diǎn)A的坐標(biāo);
(2)若直線
的傾斜角為
,求線段AB的長(zhǎng).
(1) 點(diǎn)A的坐標(biāo)為
或
.
(2) 線段AB的長(zhǎng)是8
【解析】
試題分析:解:由
,得
,其準(zhǔn)線方程為
,焦點(diǎn)
.
設(shè)
,
.
![]()
(1)由拋物線的定義可知,
,從而
.
代入
,解得
.
∴ 點(diǎn)A的坐標(biāo)為
或
.
(2)直線l的方程為
,即
.
與拋物線方程聯(lián)立,得
,
消y,整理得
,其兩根為
,且
.
由拋物線的定義可知,
.
所以,線段AB的長(zhǎng)是8.
考點(diǎn):直線與拋物線的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是利用拋物線的定義以及直線與拋物線的位置關(guān)系聯(lián)立方程組來(lái)結(jié)合韋達(dá)定理得到,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年崇文區(qū)二模理)(14分)
已知直線
,拋物線
,定點(diǎn)M(1,1)。
(I)當(dāng)直線
經(jīng)過(guò)拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線
的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N 是否在拋物線C上;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線
,拋物線
,
定點(diǎn)M(1,1)。
(I)當(dāng)直線
經(jīng)過(guò)拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線
的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N 是否在拋物線C上;
(II)當(dāng)
變化且直線
與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線
的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式
;若P與M重合時(shí),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知直線
經(jīng)過(guò)拋物線
的焦點(diǎn),且與拋物線交于
兩點(diǎn),點(diǎn)
為坐標(biāo)原點(diǎn).
![]()
(Ⅰ)證明:
為鈍角.
(Ⅱ)若
的面積為
,求直線
的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線
經(jīng)過(guò)拋物線C:
的焦點(diǎn),且斜率k>2。
與拋物線C交于A,B兩點(diǎn), AB的中點(diǎn)M 到直線
的距離為
,則m的取值范圍為_(kāi)_____.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com