【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=
,求{bn}的前n項(xiàng)和.
【答案】
(1)解:∵6Sn=(an+1)(an+2),
∴6Sn+1=(an+1+1)(an+1+2),
∴(an+an﹣1)(an﹣an﹣1﹣3)=0,
∵an>0,
∴an﹣an﹣1=3,
∴{an}為等差數(shù)列
∵6S1=(a1+1)(a1+2),
∵a1>1,
∴a1=2,
∴an=3n﹣1
(2)解:bn=
=
=
(
﹣
),
∴{bn}的前n項(xiàng)和為
(
﹣
)=
(
﹣
)
【解析】(1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),兩式作差,即可證明{an}為等差數(shù)列,從而求出an . (2)由an=3n﹣1,推導(dǎo)出bn=
(
﹣
),由此利用裂項(xiàng)求和法能求出數(shù)列{bn}的前n.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=
.
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點(diǎn)個(gè)數(shù)并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點(diǎn)為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個(gè)不等實(shí)根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對(duì)應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體
中,
分別是棱
的中點(diǎn),
為棱
上一點(diǎn),且異面直線
與
所成角的余弦值為
.
![]()
(1)證明:
為
的中點(diǎn);
(2)求平面
與平面
所成銳二面角的余弦值.
【答案】(1)見解析(2)![]()
【解析】試題分析:(1)以
為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
,不妨令正方體的棱長(zhǎng)為2,設(shè)
,利用
,解得
,即可證得;
(2)分別求得平面
與平面
的法向量
,利用
求解即可.
試題解析:
(1)證明:以
為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
.
不妨令正方體的棱長(zhǎng)為2,
則
,
,
,
,
,
設(shè)
,則
,
,
所以
,
所以
,解得
(
舍去),即
為
的中點(diǎn).
(2)解:由(1)可得
,
,
設(shè)
是平面
的法向量,
則
.令
,得
.
易得平面
的一個(gè)法向量為
,
所以
.
所以所求銳二面角的余弦值為
.
![]()
點(diǎn)睛:空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
【題型】解答題
【結(jié)束】
22
【題目】已知橢圓
的短軸長(zhǎng)為2,且橢圓
過點(diǎn)
.
(1)求橢圓
的方程;
(2)設(shè)直線
過定點(diǎn)
,且斜率為
,若橢圓
上存在
兩點(diǎn)關(guān)于直線
對(duì)稱,
為坐標(biāo)原點(diǎn),求
的取值范圍及
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,且
.
(1)判斷函數(shù)
的奇偶性;
(2) 判斷函數(shù)
在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐OO1的體積為
π.設(shè)它的底面半徑為x,側(cè)面積為S.
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)圓錐底面半徑x為多少時(shí),圓錐的側(cè)面積最小?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
是定義域?yàn)?/span>
的奇函數(shù).
(1)確定
的值;
(2)若
,函數(shù)
,
,求
的最小值;
(3)若
,是否存在正整數(shù)
,使得
對(duì)
恒成立?若存在,請(qǐng)求出所有的正整數(shù)
;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)在某一學(xué)校隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,測(cè)試成績(jī)(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為
,則( ) ![]()
A.me=m0= ![]()
B.me=m0< ![]()
C.me<m0< ![]()
D.m0<me< ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于區(qū)間
,若函數(shù)
同時(shí)滿足:①
在
上是單調(diào)函數(shù);②函數(shù)
,
的值域是
,則稱區(qū)間
為函數(shù)
的“保值”區(qū)間.
(1)求函數(shù)
的所有“保值”區(qū)間.
(2)函數(shù)
是否存在“保值”區(qū)間?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com