| A. | [0,+∞) | B. | (0,+∞) | C. | [1,+∞) | D. | [$\frac{\sqrt{3}}{2}$,+∞) |
分析 可先配方得到${x}^{2}-x+1=(x-\frac{1}{2})^{2}+\frac{3}{4}≥\frac{3}{4}$,從而可以得出$\sqrt{{x}^{2}-x+1}$的范圍,即得出該函數(shù)的值域.
解答 解:${x}^{2}-x+1=(x-\frac{1}{2})^{2}+\frac{3}{4}≥\frac{3}{4}$;
∴$\sqrt{{x}^{2}-x+1}≥\frac{\sqrt{3}}{2}$;
∴該函數(shù)的值域?yàn)閇$\frac{\sqrt{3}}{2}$,+∞).
故選:D.
點(diǎn)評 考查函數(shù)值域的概念,配方法求二次函數(shù)的值域,根據(jù)不等式的性質(zhì)求函數(shù)的值域.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com