欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.在棱長為1的正方體ABCD-A1B1C1D1中,E為DD1的中點.
(1)求二面角B1-AC-E的大;
(2)求點B到平面AEC的距離.

分析 (1)取AC的中點O,連接EO,B1O,B1E,則EO⊥AC,B1O⊥AC,∠B1OE是二面角B1-AC-E的平面角,即可求二面角B1-AC-E的大。
(2)由等體積可求點B到平面AEC的距離.

解答 解:(1)取AC的中點O,連接EO,B1O,B1E,則EO⊥AC,B1O⊥AC,
∴∠B1OE是二面角B1-AC-E的平面角,
∵EO=$\frac{\sqrt{3}}{2}$,B1O=$\frac{\sqrt{6}}{2}$,B1E=$\frac{3}{2}$,
∴cos∠B1OE=$\frac{\frac{3}{4}+\frac{6}{4}-\frac{9}{4}}{2×\frac{\sqrt{3}}{2}×\frac{\sqrt{6}}{2}}$=0,
∴∠B1OE=90°,即二面角B1-AC-E的平面角是90°;
(2)設(shè)點B到平面AEC的距離為h,則
∵S△AEC=$\frac{1}{2}×\sqrt{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{6}}{4}$,S△ABC=$\frac{1}{2}$,
∴由等體積可得,$\frac{1}{3}$•S△ABC•ED=$\frac{1}{3}$S△AEC•h,即$\frac{1}{3}×\frac{1}{2}×\frac{1}{2}=\frac{1}{3}×\frac{\sqrt{6}}{4}h$,
∴h=$\frac{\sqrt{6}}{6}$.

點評 本題考查二面角平面角的計算,考查點面距離的計算,考查學(xué)生分析解決問題的能力,確定二面角的平面角,正確運用等體積法是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+mx2(m∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若m=0,A(a,f(a)),B(b,f(b))是函數(shù)f(x)圖象上不同的兩點,且a>b>0,f′(x)為f(x)的導(dǎo)函數(shù),求證:f′($\frac{a+b}{2}$)<$\frac{f(a)-f(b)}{a-b}$<f′(b);
(3)求證:$\frac{2}{3}$+$\frac{2}{5}$+…+$\frac{2}{2n+1}$<ln(n+1)<1+$\frac{1}{2}$+…+$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的各項互不相等,前兩項的和為10,設(shè)向量$\overrightarrow{m}$=(a1,a3),$\overrightarrow{n}$=(a3,a7),且$\overrightarrow{m}∥\overrightarrow{n}$;
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=($\sqrt{2}$)${\;}^{{a}_{n}-2}$,n∈N*,求數(shù)列{$\frac{1}{{_{n}}^{2}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)的值域:y=sin2x-sinx+1,x∈[$\frac{π}{3},\frac{3π}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=ax2+lnx,f1(x)=$\frac{1}{2}$x2+2ax,a∈R,若f(x)<f1(x)在區(qū)間(1,+∞)上恒成立,則a的取值范圍為(-$∞,\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在長方體ABCD-A1B1C1D1中,AA1=9,AB=BC=6$\sqrt{3}$,N,M,P分別為BC,A1B1,C1D1的中點.
(1)求點P到平面B1MN的距離;
(2)求PC與平面B1MN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,M是Rt△ABC與Rt△ABD的公共邊AB的中點,連結(jié)CM,DM,恰好△CMD為直角三角形,若BD=6,AD=8,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四面體P-ABC中,底面ABC是邊長為1的正三角形,PB=PC=$\sqrt{2}$,AB⊥BP.
(Ⅰ)求證:PA⊥BC
(Ⅱ)求點P到底面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖程序運行后,輸出的值是( 。
A.-4B.5C.9D.14

查看答案和解析>>

同步練習(xí)冊答案