欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知實(shí)數(shù)變量xy滿足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤0}\\{mx-\frac{1}{2}y-1≤0}\end{array}\right.$,且目標(biāo)函數(shù)z=3x-y的最大值為4,則實(shí)數(shù)m的值為(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.2D.1

分析 畫(huà)出滿足條件的平面區(qū)域,找到直線y=3x-z過(guò)A點(diǎn)時(shí),z取得最大值4,將A點(diǎn)的坐標(biāo)代入直線z=3x-y的方程,求出m的值即可.

解答 解:畫(huà)出滿足條件的平面區(qū)域,如圖示:
,
由z=3x-y得y=3x-z,
顯然直線y=3x-z過(guò)A點(diǎn)時(shí),z取得最大值4,
∴z=$\frac{4}{2m-1}$=4,解得:m=1,
故選:D.

點(diǎn)評(píng) 本題考察了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考察數(shù)形結(jié)合,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若f(x)+${∫}_{0}^{1}$f(x)dx=x,則${∫}_{0}^{1}$f(x)dx=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.4月23人是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)謎”,低于60分鐘的學(xué)生稱為“非讀書(shū)謎”

(1)求x的值并估計(jì)全校3000名學(xué)生中讀書(shū)謎大概有多少?(經(jīng)頻率視為頻率)
非讀書(shū)迷讀書(shū)迷合計(jì)
15
45
合計(jì)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)謎”與性別有關(guān)?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線l,m和平面α,β,下列命題中正確的是( 。
A.若l∥α,l∥β,則α∥βB.若l∥α,m?α,則l∥mC.若α⊥β,l∥α,則l⊥βD.若l⊥α,m?α,則l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)x,y是正實(shí)數(shù),且x+y=3,則$\frac{{y}^{2}}{x+1}$+$\frac{{x}^{2}}{y+1}$的最小值是$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b∈R,則“a2+b2≤1”是“ab≤$\frac{1}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x2+|x+1-a|,其中a為實(shí)常數(shù).
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)若對(duì)任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$+1
(1)當(dāng)a=$\frac{1}{4}$時(shí),求函數(shù)y=f(x)的極值;
(2)當(dāng)$a∈(\frac{1}{3},1)$時(shí),若對(duì)任意實(shí)數(shù)b∈[2,3],當(dāng)x∈(0,b]時(shí),函數(shù)f(x)的最小值為f(b),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若點(diǎn)P(x,y)滿足線性約束條件$\left\{\begin{array}{l}\sqrt{3}x-y≤0\\ x-\sqrt{3}y+2≥0\\ y≥0\end{array}\right.$,點(diǎn)$A(3,\sqrt{3})$,O為坐標(biāo)原點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值為(  )
A.0B.3C.-6D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案