欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
18.已知菱形ABCD的邊長為2,E為AB的中點,∠ABC=120°,則$\overrightarrow{DE}$•$\overrightarrow{BD}$的值為(  )
A.3B.-3C.$\sqrt{3}$D.-$\sqrt{3}$

分析 根據棱形的性質以及向量的數量積公式計算即可.

解答 解:菱形ABCD的邊長為2,∠ABC=120°,
∴AB=BD=AD=2,
∵E為AB的中點,
∴DE=$\frac{\sqrt{3}}{2}$AD=$\sqrt{3}$,∠EDB=30°,
∴$\overrightarrow{DE}$•$\overrightarrow{BD}$=-$\overrightarrow{DE}$•$\overrightarrow{DB}$=-$\sqrt{3}$×2×$\frac{\sqrt{3}}{2}$=-3,
故選:B

點評 本題考查了棱形的性質以及向量的數量積公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.已知數列{an}中,a1=1,an+1=1+$\frac{2}{{a}_{n}}$,記bn=$\frac{{a}_{n}-2}{{a}_{n}+1}$
(1)求證:數列{bn}是等比數列,并求bn
(2)求數列{an}的通項公式an;
(3)記cn=nbn,Sn=c1+c2+…+cn,對任意正整數n,不等式$\frac{m}{32}$+$\frac{3}{2}$Sn+n(-$\frac{1}{2}$)n+1-$\frac{1}{3}$(-$\frac{1}{2}$)n>0恒成立,求最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.在直角坐標系xOy中,曲線C的參數方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數),直線l的參數方程為$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}t}\\{y=3+\frac{1}{2}t}\end{array}\right.$(t為參數),在以坐標原點O為極點,x軸為正半軸為極軸的極坐標系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標為(2$\sqrt{3}$,θ),其中θ∈($\frac{π}{2}$,π)
(Ⅰ)求θ的值;
(Ⅱ)若射線OA與直線l相交于點B,求|AB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.設矩陣A滿足:A$[\begin{array}{l}{1}&{2}\\{0}&{6}\end{array}]$=$[\begin{array}{l}{-1}&{-2}\\{0}&{3}\end{array}]$,求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=7,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分別在線段AD,CP上,且$\frac{AM}{MD}$=$\frac{PN}{NC}$=4.
(Ⅰ)求證:MN∥平面PAB;
(Ⅱ)求三棱錐P-AMN的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知i為虛數單位,復數z滿足(1+i)z=(1-i)2,則|z|為(  )
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.如圖所示,已知$\overrightarrow{AC}=3\overrightarrow{BC}$,$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$,則下列等式中成立的是( 。
A.$\overrightarrow c=\frac{3}{2}\overrightarrow b-\frac{1}{2}\overrightarrow a$B.$\overrightarrow c=2\overrightarrow b-\overrightarrow a$C.$\overrightarrow c=2\overrightarrow a-\overrightarrow b$D.$\overrightarrow c=\frac{3}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知函數$f(x)=\frac{{2a-{x^2}}}{e^x}(a∈R)$.
(Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)若?x∈[1,+∞],不等式f(x)>-1恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案