欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知f(x)=$\frac{1}{2}$ax2-x-ln(1+x),其中a>0,求f(x)的單調(diào)區(qū)間.

分析 先求出函數(shù)f(x)的導(dǎo)數(shù),令導(dǎo)函數(shù)為0,從而求出函數(shù)的單調(diào)區(qū)間.

解答 解:∵f(x)=$\frac{1}{2}$ax2-x-ln(1+x),(a>0,x>-1),
∴f′(x)=ax-1-$\frac{1}{x+1}$=$\frac{{ax}^{2}+ax-x-2}{x+1}$,
令g(x)=ax2+(a-1)x-2=0,
△=(a-1)2+8a>0,
∴x1=$\frac{1-a-\sqrt{{a}^{2}+6a+1}}{2a}$,x2=$\frac{1-a+\sqrt{{a}^{2}+6a+1}}{2a}$,
而x1-(-1)=$\frac{1+a-\sqrt{{a}^{2}+6a+1}}{2a}$<0,x2-(-1)>0,
∴x1<-1,x2>-1,x1 不在定義域內(nèi),舍,
∴令f′(x)>0,解得:x>$\frac{1+a+\sqrt{{a}^{2}+6a+1}}{2a}$,
令f′(x)<0,解得:-1<x<$\frac{1+a+\sqrt{{a}^{2}+6a+1}}{2a}$,
∴函數(shù)f(x)在(-1,$\frac{1+a+\sqrt{{a}^{2}+6a+1}}{2a}$)遞減,在($\frac{1+a+\sqrt{{a}^{2}+6a+1}}{2a}$,+∞)遞增.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的應(yīng)用,結(jié)合函數(shù)的定義域判斷導(dǎo)函數(shù)的根的情況是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)1+x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,則a1+a2+…+a5=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≥1}\\{\frac{1}{x},0<x<1}\end{array}\right.$,g(x)=af(x)-|x-2|,a∈R.
(Ⅰ)當(dāng)a=0時(shí),若g(x)≤|x-1|+b對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)y=g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖是一個(gè)幾何體的三視圖,則該幾何體體積為( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知an+1=$\frac{2{a}_{n}-1}{{a}_{n}+4}$,a1=1,求{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-ax-ln2.
(1)討論y=f(x)的單調(diào)性;
(2)當(dāng)a=1,時(shí),對(duì)任意x∈(0,+∞),不等式f(x)≤bx-1恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a7=4,a19=2a9,數(shù)列{bn}的前n項(xiàng)和為Tn,滿足${4}^{{2a}_{n}-1}$=λTn-(a5-1)(n∈N*
(1)問是否存在非零實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由;
(2)已知對(duì)于n∈N*,不等式$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<M恒成立,求實(shí)數(shù)M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2BB1,∠ABC=90°,D為BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面ADC1
(Ⅱ)求二面角C-AD-C1的余弦值;
(Ⅲ)若E為A1B1的中點(diǎn),求AE與DC1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,如果$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$-3$\overrightarrow$,D 是BC的中點(diǎn),那么|$\overrightarrow{AD}$|=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案