| A. | -4 | B. | 4 | C. | 28 | D. | -10 |
分析 由約束條件作出可行域,由區(qū)域D為等腰直角三角形,求面積得到m的值,再由數(shù)量積的坐標(biāo)表示可得Z=2x+4y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x-y≥-4}\\{x+y≥0}\\{x≤m}\end{array}\right.$作出可行域如圖,![]()
區(qū)域D為等腰直角三角形,
由三角形面積為16可得m=2.
又Z=$\overrightarrow{OM}$•$\overrightarrow{OA}$=2x+4y,
聯(lián)立$\left\{\begin{array}{l}{x=2}\\{x+y=0}\end{array}\right.$,解得B(2,-2).
化目標(biāo)函數(shù)Z=2x+4y為$y=-\frac{x}{2}+\frac{Z}{4}$,
由圖可知,當(dāng)直線$y=-\frac{x}{2}+\frac{Z}{4}$過(guò)點(diǎn)B(2,-2)時(shí)直線在y軸上的截距最小,Z取最小值為2×2+4×(-2)=-4.
故選:A.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [0,2) | B. | (-2,0] | C. | [0,+∞) | D. | (-∞,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com