分析 由題意畫出圖形,取CD中點(diǎn)G,把四面體體積轉(zhuǎn)化為兩個(gè)三棱錐D-ABG、C-ABG的體積求解;由題目所給四面體的對(duì)稱性及其外接球的對(duì)稱性可知取AB中點(diǎn)Q,連接GQ,由對(duì)稱性可知,四面體ABCD外接球的球心O在GQ上,由于勾股定理,計(jì)算即可得到半徑R.
解答
解:如圖,取CD中點(diǎn)G,∵△ACD、△BCD都是邊長為$\sqrt{3}$的正三角形,
∴AG=BG=$\frac{3}{2}$,
在等腰三角形AGB中,又AB=$\sqrt{5}$,∴G到AB的距離為$\sqrt{(\frac{3}{2})^{2}-(\frac{\sqrt{5}}{2})^{2}}=1$,
則${S}_{△AGB}=\frac{1}{2}×\sqrt{5}×1=\frac{\sqrt{5}}{2}$,
∴${V}_{ABCD}=\frac{1}{3}×\frac{\sqrt{5}}{2}×\sqrt{3}=\frac{\sqrt{15}}{6}$;
取AB中點(diǎn)Q,連接GQ,
由對(duì)稱性可知,四面體ABCD外接球的球心O在GQ上,
由勾股定理可得$\sqrt{{R}^{2}-(\frac{\sqrt{5}}{2})^{2}}$+$\sqrt{{R}^{2}-(\frac{\sqrt{3}}{2})^{2}}$=1,
解得R=$\frac{\sqrt{21}}{4}$.
點(diǎn)評(píng) 本小題主要考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,訓(xùn)練了正弦定理和余弦定理的應(yīng)用,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-$\frac{3}{4}$,6) | B. | (-6,$\frac{3}{4}$) | C. | (-∞,-6)∪($\frac{3}{4}$,+∞) | D. | (-∞,-$\frac{3}{4}$)∪(6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com