| A. | ($\sqrt{2}$,$\frac{\sqrt{5}+1}{2}$) | B. | ($\sqrt{2}$,$\frac{\sqrt{6}+1}{2}$) | C. | (1,$\frac{\sqrt{5}+1}{2}$) | D. | ($\frac{\sqrt{5}+1}{2}$,+∞) |
分析 求出直線BF的方程為cx+by-bc=0,利用直線與圓的位置關(guān)系,結(jié)合a<b,即可求出雙曲線離心率e的取值范圍.
解答 解:由題意可設(shè)F(0,c),B(b,0),則直線BF的方程為cx+by-bc=0,
∵在線段BF上(不含端點(diǎn))有且只有不同的兩點(diǎn)Pi(i=1,2),使得∠A1PiA2=$\frac{π}{2}$,
∴線段BF與以A1A2為直徑的圓相交,即$\frac{bc}{\sqrt{^{2}+{c}^{2}}}$<a,化為b2c2<a4,
又b2=c2-a2,e=$\frac{c}{a}$,
∴e4-3e2+1<0,解得$\frac{3-\sqrt{5}}{2}$<e2<$\frac{3+\sqrt{5}}{2}$,又e>1
∴1<e<$\frac{\sqrt{5}+1}{2}$,
∵在線段BF上(不含端點(diǎn))有且僅有兩個(gè)不同的點(diǎn)Pi(i=1,2),使得∠A1PiA2=$\frac{π}{2}$,
可得a<b,
∴a2<c2-a2,解得e>$\sqrt{2}$,
綜上得,$\sqrt{2}$<e<$\frac{\sqrt{5}+1}{2}$.
故選:A.
點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì),考查離心率的范圍,考查直線與圓的位置關(guān)系的判斷,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{5}{14}$ | B. | $\frac{3}{8}$ | C. | $\frac{27}{56}$ | D. | $\frac{55}{56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | |$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$| | B. | |$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$| | C. | |$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$| | D. | |$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | f(x)是奇函數(shù) | B. | x=$-\frac{π}{4}$是f(x)一條對(duì)稱軸 | ||
| C. | f(x)的最小正周期為$\frac{π}{2}$ | D. | ($-\frac{π}{4}$,0)是f(x)的一條對(duì)稱軸 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com