分析 (1)要使樹(shù)被圈進(jìn)去,則ABCD中BC≥a,CD≥4,由此可確定函數(shù)的變量的范圍.設(shè)長(zhǎng)BC=x米,寬CD=(16-x)米,所以面積y=f(x)=x(16-x)=-x2+16x;
(2)由(1)得,y=f(x)=-x2+16x=-(x-8)2+64,x∈[a,12],由于對(duì)稱(chēng)軸x=8,根據(jù)0<a<12,故要進(jìn)行分類(lèi)討論:即8≤a<12;4≤a<8;0<a<4,從而可求y=f(x)的最大值.
解答 解:(1)要使樹(shù)被圈進(jìn)去,則ABCD中BC≥a,CD≥4,
因?yàn)榛h笆長(zhǎng)為16米,所以當(dāng)長(zhǎng)BC=x米時(shí),寬CD=(16-x)米.
由于BC≥a,CD≥4,故a≤x≤12,
所以面積y=f(x)=x(16-x)=-x2+16x,其定義域?yàn)閤∈[a,12];
(2)由(1)得,y=f(x)=-x2+16x=-(x-8)2+64,x∈[a,12]
對(duì)稱(chēng)軸x=8,又因?yàn)?<a<12,
所以,當(dāng)8≤a<12時(shí),x=a時(shí),ymax=-a2+16a;
當(dāng)4≤a<8時(shí),x=8時(shí),ymax=64;
當(dāng)0<a<4時(shí),x=8時(shí),ymax=64.
點(diǎn)評(píng) 本題以實(shí)際問(wèn)題為載體,考查函數(shù)模型的構(gòu)建,考查二次函數(shù)最值的求解,解題的關(guān)鍵是讀懂題意,正確分類(lèi).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$:$\sqrt{2}$ | B. | $\sqrt{2}$:1 | C. | $\sqrt{3}$:1 | D. | 2:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | e${\;}^{{x}_{2}}$f(x1)>e${\;}^{{x}_{1}}$f(x2) | B. | e${\;}^{{x}_{2}}$f(x1)<e${\;}^{{x}_{1}}$f(x2) | ||
| C. | e${\;}^{{x}_{1}}$f(x1)>e${\;}^{{x}_{2}}$f(x2) | D. | e${\;}^{{x}_{1}}$f(x1)<e${\;}^{{x}_{2}}$f(x2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com