欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求a,b的值:
(2)討論f(1)和f(-1)是函數(shù)f(x)的極大值還是極小值.

分析 (1)先求出函數(shù)的導數(shù),結(jié)合函數(shù)的極值得到方程組,解出a,b的值即可;
(2)通過(1)求出函數(shù)的解析式,得到函數(shù)的導數(shù),通過討論x的范圍,從而得到函數(shù)的極大值和極小值即可.

解答 解。1)f′(x)=3ax2+2bx-3,依題意,--------------(1分)
f′(1)=f′(-1)=0,------(3分)
即$\left\{\begin{array}{l}{3a+2b-3=0}\\{3a-2b-3=0}\end{array}\right.$,解得a=1,b=0.---------(5分)
(2)f(x)=x3-3x,f′(x)=3x2-3=3(x+1)(x-1).
令f′(x)=0,得x=-1,x=1.----------(7分)
若x∈(-∞,-1)∪(1,+∞),則f′(x)>0,
故f(x)在(-∞,-1)上是增函數(shù),f(x)在(1,+∞)上是增函數(shù).
若x∈(-1,1),則f′(x)<0,
故f(x)在(-1,1)上是減函數(shù).------------(10分)
所以f (-1)=2是極大值,f(1)=-2是極小值.-----------(12分)

點評 本題考查了函數(shù)的單調(diào)性.極值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知F1、F2是橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1的兩個焦點,P是橢圓上任意一點
(1)∠F1PF2=$\frac{π}{3}$,求△F1PF2的面積
(2)求|PF1||PF2|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果一扇形的弧長為2π cm,半徑等于2cm,則扇形所對圓心角為(  )
A.B.πC.$\frac{π}{2}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知數(shù)列{an}的前n項和為Sn,滿足Sn+$\frac{1}{{S}_{n}}$+2=an(n≥2),a1=-$\frac{2}{3}$,Sn-$\frac{n+1}{n+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.三棱錐P-ABC的四個頂點都在半徑為a的球面上,若PC=2PA=2a,且AB⊥BC,則三棱錐P-ABC的體積的最大值為(  )
A.$\frac{{a}^{3}}{4}$B.$\frac{{a}^{3}}{3}$C.$\frac{{a}^{3}}{2}$D.$\frac{3{a}^{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,N是BC的中點,點P在A1B1上,且滿足$\overrightarrow{{A_1}P}$=λ$\overrightarrow{{A_1}{B_1}}$,直線PN與平面ABC所成角θ的正切值取最大值時λ的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,長沙河西先導區(qū)某廣場要劃定一矩形區(qū)域ABCD,并在該區(qū)域內(nèi)開辟出三塊形狀大小相同的矩形綠化區(qū),這三塊綠化區(qū)四周和綠化區(qū)之間設有1米寬的走道.已知三塊綠化區(qū)的總面積為800平方米,則該矩形區(qū)域ABCD占地面積的最小值為( 。┢椒矫祝
A.900B.920C.948D.968

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法正確的是( 。
A.小于90°的角是銳角B.在△ABC中,若cosA=cosB,那么A=B
C.第二象限的角大于第一象限的角D.若角α與角β的終邊相同,那么α=β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,三棱柱ABC-A1B1C1中,底面ABC為等腰直角三角形,AB=BC,側(cè)面A1B1BA和B1C1CB都是邊長為2的正方形,D為AC的中點.
(1)求證;AB1∥平面BDC1
(2)求證:A1C⊥平面BDC1;
(3)求二面角B1-BC1-D的正弦值.

查看答案和解析>>

同步練習冊答案